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Abstract

Insect-specific flaviviruses (ISFVs) commonly infect vectors of mosquito-borne arboviruses. To investigate

whether infection with an ISFV might affect mosquito flight behavior, we quantified flight behavior in Culex

pipiens L. naturally infected with Culex flavivirus (CxFV). We observed a significant reduction in the scotophase

(dark hours) flight activity of CxFV-positive mosquitoes relative to CxFV-negative mosquitoes, but only a marginal

reduction in photophase (light hours) flight activity, and no change in the circadian pattern of flight activity. These

results suggest that CxFV infection alters the flight activity of naturally infected Cx. pipiens most dramatically

when these vectors are likely to be host seeking and may therefore affect the transmission of medically important

arboviruses.
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Insect-specific flaviviruses (ISFVs; family Flaviviridae; genus

Flavivirus) are distinct from medically important flaviviruses and

are of interest because they co-occur in vectors of arthropod-borne

viruses, such as West Nile virus (WNV; Kuno 2007, Blitvich et al.

2009, Kent et al. 2010, Newman et al. 2011, Bolling et al. 2012).

Recent studies suggest that ISFVs may affect vector competence or

vectorial capacity for arboviruses (Kent et al. 2010, Bolling et al.

2012). Culex species mosquitoes are important vectors of WNV,

which is maintained in an enzootic, mosquito–bird transmission cy-

cle (Colpitts et al. 2012). ISFVs have been identified in Culex mos-

quito populations globally, but the effects of ISFVs on arbovirus

transmission have not been extensively examined (Hoshino et al.

2007, Morales-Betoulle et al. 2008, Cook et al. 2009, Blitvich et al.

2009, Bolling et al. 2011).

Culex flavivirus (CxFV) is an ISFV that infects Culex species

mosquitoes (Hoshino et al. 2007). CxFV was first identified and iso-

lated in Japan in 2007 and has since been detected in Culex popula-

tions globally (e.g., Blitvich et al. 2009, Cook et al. 2009, Bolling

et al. 2011). CxFV is primarily transovarially transmitted and has

been isolated from all mosquito tissues examined (Saiyasombat

et al. 2011, Bolling et al. 2012). Recent studies of CxFV ecology and

coinfection with WNV have generated conflicting results. In a fine-

scale study of Culex pipiens L. from a WNV “hot spot” in suburban

Chicago, CxFV and WNV coinfected individual Culex mosquitoes

and WNV-positive mosquito pools were four times more likely than

WNV-negative pools to also be positive for CxFV (Newman et al.

2011). Conversely, at a broader spatial scale, no association was

identified in Culex quinquefasciatus Say (Kent-Crockett et al. 2012).

Similarly, experimental studies of transmission have generated

equivocal results: Kent et al. (2010) found that Cx. quinquefasciatus

coinoculated with CxFV transmitted WNV more efficiently.

However, Bolling et al. (2012) identified early suppression of WNV

infection in Cx. pipiens naturally infected with CxFV. To our

knowledge, there are no studies of the potential effects of CxFV in-

fection on mosquito behavior, a factor that could influence arbovi-

rus infection and transmission.

Virus infection may alter mosquito motility or feeding behavior

(Berry et al. 1986, Platt et al. 1997, Lee et al. 2000). For example, in

Aedes aegypti (L.) infected with dengue virus, locomotor activity

was increased compared with uninfected controls (Lima-Camara

et al. 2011). Conversely, when Aedes trivittatus Coquillett were in-

fected with trivittatus virus, there was no significant difference in

spontaneous flight activity compared with uninfected controls

(Berry et al. 1987). In Culex tarsalis Coquillett infected with

Western equine encephalitis virus, spontaneous flight activity and

longevity were decreased, reducing vectorial capacity (Lee et al.

2000). The direction and magnitude of such effects therefore appear

to differ by system such that either an increase or decrease in subse-

quent arboviral transmission might be predicted.

To better understand the effects of CxFV infection on Cx.

pipiens behavior, we examined the circadian patterns of flight activ-

ity of Cx. pipiens naturally infected with CxFV and compared them
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with age-matched CxFV-negative mosquitoes. We predicted that

CxFV infection would affect mosquito flight activity in ways that

could subsequently influence arbovirus transmission.

Materials and Methods

Mosquitoes
Cx. pipiens mosquitoes were collected as unhatched egg rafts once

per week between September and October, 2013 from two locations

in the western suburbs of Chicago, IL (village of Alsip; 41.6706� N,

87.7322� W). Egg rafts were hatched separately, and larvae were

reared on a diet of Tetramin slurry ad libitum. Insectary chamber

conditions were maintained at 27�C, 80% humidity, and a photope-

riod of 16:8 (L:D) h, with a 90-min crepuscular period at the begin-

ning and end of each light cycle (approximating the photoperiod in

Chicago during summer). After pupal emergence, adults were identi-

fied, maintained in modified soup cartons, and fed a 0.3 M sucrose

solution.

Pairs of emerged adult mosquitoes from each original egg raft

were tested for CxFV using a nested reverse transcriptase-polymer-

ase chain reaction (RT-PCR) with pan-flavivirus and CxFV-specific

primers (following Newman et al. 2011). Prior studies by

Saiyasombat et al. (2011) and testing of Cx. pipiens from our study

site suggest a 100% efficiency of transovarial transmission for

CxFV; therefore, all mosquitoes derived from egg rafts that tested

CxFV positive were considered CxFV positive, and all mosquitoes

derived from egg rafts that tested CxFV negative were considered

CxFV negative for the purposes of assigning them to treatment

groups (infection status later confirmed; see below).

Measurement of Flight Activity
Twelve CxFV-positive and 12 CxFV-negative, 4- to 5-d-old female

mosquitoes were anesthetized using CO2 and transferred to an

acoustic flight activity chamber (Rowley et al. 1987, Keating et al.

2013) in individual reagent bottles, with position in the chamber as-

signed at random. The flight chamber allows light penetration, and

measures flight activity by recording mosquito wing beats (see

Rowley et al. 1987 for design). Activity was detected by individual

microphones and scored as “1” or “0” at 1-s intervals.

The experiment was conducted twice, with different cohorts of

age-matched CxFV-positive and CxFV-negative mosquitoes. A pho-

toperiod of 16:8 (L:D) h was maintained with hard transitions be-

tween light and dark. Activity chamber experiments were performed

at ambient temperature (�22�C). Mosquitoes were allowed to accli-

mate to chamber conditions for 12 h prior to data collection. Flight

activity was averaged hourly for each individual over 120 h (5 d; av-

erage hourly flight activity, abbreviated “flight activity” hereafter).

Flight activity was calculated for each group (CxFV positive and

CxFV negative), as well as for photophase (light phase in cycle) and

scotophase (dark phase in cycle) to identify differences in circadian

patterns. Resulting values were compared using Mann–Whitney U-

tests. Circadian activity patterns were compared between groups us-

ing repeated-measures ANOVA with the lme4 package (Bates et al.

2014) in R version 3.0.3 (R Core Team 2014) with hours as the re-

peated variable. Mosquitoes that died in the chamber prior to the

conclusion of the experiment (n¼2) were excluded.

Confirmation of CxFV Infection Status
Following experiments, individual mosquitoes were tested to con-

firm CxFV infection status as described above (see “Mosquitoes”

and Newman et al. 2011).

Results

CxFV infection strongly affected scotophase flight activity, but only

marginally affected photophase flight activity. Average scotophase

flight activity was significantly lower for 22 CxFV-positive mosqui-

toes compared with 24 CxFV-negative mosquitoes (Table 1).

Conversely, there was only a marginal difference in average photo-

phase flight activity between CxFV-positive mosquitoes and CxFV-

negative mosquitoes (Table 1). Repeated-measures ANOVA indi-

cated that flight activity differed significantly by infection status

(CxFV positive or CxFV negative) at each time point (hour), with a

significant interaction between infection status and time point: the

average activity peaks of CxFV-positive mosquitoes decreased more

steeply than the average activity peaks of CxFV-negative mosquitoes

(Table 2).

Overall circadian activity patterns were similar between CxFV-pos-

itive and CxFV-negative mosquitoes over 120 h (Fig. 1). Both groups

of mosquitoes showed a bimodal activity pattern beginning just prior

to (�2200 hours) and continuing through each scotophase (until

�0600 hours). Average flight activity peaked with the onset of the sco-

tophase and generally decreased over the period of darkness with a sec-

ond, smaller increase in activity leading into each photophase.

Discussion

We used an acoustic flight activity chamber to evaluate the effect of

natural CxFV infection on the flight activity of Cx. pipiens.

Scotophase flight activity of CxFV-positive Cx. pipiens was signifi-

cantly lower than that of CxFV-negative Cx. pipiens. This trend per-

sisted in a repeated-measures ANOVA which showed that CxFV-

positive mosquitoes had lower flight activity than CxFV-negative

mosquitoes at any given point in time during scotophase.

Additionally, there was a significant interaction between infection

status and time point: the average flight activity of CxFV-positive

Table 1. Average flight activity of CxFV-positive and CxFV-negative

Cx. pipiens during scotophase and photophase

Mosquitoes Avg. activity (s/h) n U P

Scotophase

CxFVþ 51.99 22

CxFV� 148.20 24 327708 <0.0001*

Photophase

CxFVþ 4.11 22

CxFV� 5.24 24 1575656 0.05*

Nonparametric, Mann–Whitney U-test results are shown.

*Statistical significance.

Table 2. Repeated-measures ANOVA on the flight activity of 22

CxFV-positive and 24 CxFV-negative Cx. pipiens

Variable df SS MS F P

Groupa 1 1631123 1631123 5.18 <0.05*

Time pointb 119 28832853 242293 29.17 <0.0001*

Group::time point 119 6390408 53701 6.47 <0.0001*

a Group—CxFV-positive or CxFV-negative mosquitoes.
b Time point—repeated variable of “hours” for each mosquito in each

group.

*Statistical significance.
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mosquitoes decreased more steeply than that of CxFV-negative mos-

quitoes. Overall, these results suggest that CxFV infection has a

dampening effect on Cx. pipiens flight activity.

The mechanisms underlying the trends we have documented are

currently unclear. For example, it is not known whether CxFV in-

fects mosquito flight muscles. The observed decrease in flight activ-

ity of CxFV-positive mosquitoes could be associated with

pathology; however, CxFV in mosquito cell culture is associated

with few to moderate cytopathic effects (CPE) (Hoshino et al.

2007). Further, in Culex tritaeniorhynchus Giles cells persistently in-

fected with CxFV, there is no discernible CPE (Kuwata et al. 2015).

CxFV may infect nervous tissue, as studies by Kent at al. (2010) and

Saiyasombat et al. (2011) showed evidence of CxFV infection in

head tissues of mosquitoes. Given that activity patterns in Diptera

are regulated by circadian clock neurons in the brain (Hall 2003),

this is a plausible mechanism and has previously been invoked by

Lima-Camara et al. (2011) in dengue virus studies. In addition, den-

gue virus has been shown to extensively invade the mosquito ner-

vous system (Platt et al. 1997), suggesting this could occur with

other flaviviruses. The decrease in flight activity of CxFV-positive

mosquitoes might also suggest a fitness cost associated with CxFV

infection and potentially an increase in energy expenditure. In

Drosophila melanogaster infected with an insect-only, vertically

transmitted rhabdovirus, D. melanogaster sigma virus (DmelSV), a

decrease in fitness is observed compared with uninfected flies

(Longdon et al. 2012). Infection with DmelSV is also associated

with a decrease in overwinter survival potentially suggesting that en-

ergy expenditure is increased in infected flies (Fleuriet 1981).

ISFVs differ from medically important arboviruses in a number of

ways. Unlike arboviruses, ISFVs appear to infect only insects and in-

sect-derived cells. This suggests that ISFVs may be similar to the evolu-

tionary precursors of arboviruses (Hoshino et al. 2007). ISFVs are

vertically transmitted (Saiyasombat et al. 2011, Bolling et al. 2012),

whereas vertical transmission of arboviruses is infrequent (Dohm et al.

2002, Anderson et al. 2012). Thus, ISFVs may be more “vector

adapted” than their arbovirus counterparts (Lobo et al. 2009). If so,

the effects we have documented may reflect an unrecognized negative

effect of an insect-specific flavivirus on the host.

Although CxFV-positive and CxFV-negative mosquitoes differed in

flight activity, there was extensive within-group variation. This may re-

flect small sample size or geographic and genetic variation in mosquito

populations. There is evidence that WNV and dengue virus vector com-

petence may vary between regions and mosquito populations (Bennett

et al. 2002, Vaidyanathan et al. 2007). Indeed, a pilot experiment con-

ducted with mosquitoes from Wisconsin and Chicago showed prelimi-

nary evidence of such variation (C. M. N., unpublished data).

Cx. pipiens from Chicago are active during the crepuscular and

nighttime hours. In this region, large aggregations of avian hosts for

WNV form at dusk and persist until early morning (Krebs et al. 2014).

Because these are the same times that Cx. pipiens engage in host-seeking

behaviors (Mitchell 1982, Savage et al. 2008), our findings raise the pos-

sibility that CxFV infection may influence WNV transmission. We previ-

ously observed a positive association between CxFV and WNV in

mosquito pools collected during 2006 (Newman et al. 2011). These data

suggest that CxFV and WNV may interact, perhaps indirectly, in nature.

If CxFV infection decreases the overall flight activity of a mosquito, this

could indirectly decrease contact with arbovirus amplification hosts. We

speculate that such an effect may explain the geographically clustered

pattern of WNV infection observed in some regions on a fine scale, in

addition to factors such as vector and host abundance, land cover, and

climate (Centers for Disease Control and Prevention 2010, Crowder

et al. 2013). Although we did not examine the effects of WNV and coin-

fection on mosquito behavior, such experiments will be necessary to de-

velop an understanding of the potential for viruses such as CxFV to

modify WNV transmission. Understanding ISFVs remains an important

avenue of future research, particularly in systems where ISFVs and other

arbovirus cocirculate.
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