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Abstract

Mosquito-based surveillance is a practical way to estimate the risk of transmission of West Nile virus (WNV) to

people. Variations in temperature and precipitation play a role in driving mosquito infection rates and transmis-

sion of WNV, motivating efforts to predict infection rates based on prior weather conditions. Weather conditions

and sequential patterns of meteorological events can have particularly important, but regionally distinctive,

consequences for WNV transmission, with high temperatures and low precipitation often increasing WNV mos-

quito infection. Predictive models that incorporate weather can thus be used to provide early indications of the

risk of WNV infection. The purpose of this study was first, to assess the ability of a previously published model

of WNV mosquito infection to predict infection for an area within the region for which it was developed, and se-

cond, to improve the predictive ability of this model by incorporating new weather factors that may affect mos-

quito development. The legacy model captured the primary trends in mosquito infection, but it was improved

considerably when calibrated with local mosquito infection rates. The use of interaction terms between precipi-

tation and temperature improved model performance. Specifically, temperature had a stronger influence than

rainfall, so that lower than average temperature greatly reduced the effect of low rainfall on increased infection

rates. When rainfall was lower, high temperature had an even stronger positive impact on infection rates. The

final model is practical, stable, and operationally valid for predicting West Nile virus infection rates in future

weeks when calibrated with local data.
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Since the introduction of West Nile virus (WNV) into the

Western Hemisphere via New York City in 1999, WNV has

spread throughout the Americas and poses an ongoing and ser-

ious threat to human and animal health. Over 40,000 cases of ill-

ness from WNV were reported through public health surveillance

systems in the United States between 1999 and 2014 (CDC

2014). The number and location of cases has varied each year,

and the ability to predict outbreaks has proven to be challenging.

After a period of relatively low activity between the years 2008

to 2011, a large outbreak in 2012, with 5,674 human cases re-

ported in the United States, renewed concern about the need for

public health preparedness, and spurred efforts to determine bet-

ter ways to anticipate and reduce the risk of exposure to WNV

(Nasci 2013).

Mosquito-based surveillance is a recommended, standard, and

practical way to estimate the risk of transmission of WNV and other

mosquito-borne pathogens to people (Macdonald 1956, Moore

et al. 1993, Hokit et al. 2013). Select species of mosquitoes in the

genus Culex comprise over 95 percent of the positive tests for WNV

in the United States and are the primary focus of mosquito surveil-

lance efforts (Andreadis 2012). After trapping of blood-fed vector

mosquitoes and virus diagnostic testing, the minimum infection rate

and the maximum likelihood estimator for mosquito infection rates

based on pooled samples are common measures used to estimate the

true infection rate (Walter et al. 1980, Hepworth 2005, Gu et al.

2003, Biggerstaff 2009, Ebert et al. 2010).

Variations in temperature and precipitation play a role in driving

the WNV infection rate and transmission, motivating efforts to
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predict WNV mosquito infection rates from prior weather condi-

tions. Warmer weather increases potential for transmission because

it reduces the number of days between virus ingestion to effective

transmission (extrinsic incubation period), shortens the length of

time between bloodmeals (gonotrophic cycle), and leads to an earlier

start to seasonal mosquito activity (Turell et al. 2001, 2005; Dohm

et al. 2002; Reisen et al. 2010; Hartley et al. 2012). Mosquito abun-

dance also generally increases with warmer temperatures, but very

hot conditions can have the opposite effect, and shorter life spans in

Culex mosquitoes may reduce transmission, as fewer individuals live

long enough to become infectious (Chaves et al. 2013, Ciota and

Kramer 2013).

Hydrologic conditions also affect WNV transmission. Culex

mosquitoes reproduce in standing water, but heavy rainfall can re-

duce Culex survival both at the adult stage and during larval devel-

opment (Gardner et al. 2012, Jones et al. 2012). Rainfall influences

near-surface humidity, and studies have found that higher humidity

induced oviposition in gravid Culex nigripalpus (Day and Curtis

1999) and Culex quinquefasciatus (Chaves and Kitron 2011). Thus,

rainfall may increase the potential for pathogen transmission as fe-

males seek bloodmeals prior to oviposition. The frequency, strength,

and timing of rainfall events can also affect water chemistry and the

degree to which standing water is suitable for mosquito preadult de-

velopment (Shaman and Day 2007, Chaves and Kitron 2011,

Gardner et al. 2013).

The net result of these effects is that high temperatures combined

with low precipitation have often led to higher than average mos-

quito infection, but these effects vary by region, and the effect of

rainfall is especially variable. Weekly patterns of lower than average

rainfall and higher temperature, for example, explained about 70

percent of the variability in WNV mosquito infection rates in a

study focused on the Chicago, Illinois area (Ruiz et al. 2010).

Similarly, drought followed by wet conditions preceded the report-

ing of WNV human illness in Florida (Shaman et al. 2005).

Drought, during which mosquitoes and birds are in closer proximity

due to reduced water availability, could cause local sylvatic amplifi-

cation of WNV, and subsequent rainfall could then allow dispersal

of infected vectors and hosts (Shaman et al. 2005). Especially during

very hot and dry periods, human-introduced water can create mos-

quito habitats that might not be otherwise available (Reisen et al.

2008, Barker et al. 2009, Becker et al 2014). The relationship be-

tween prior rainfall and WNV outbreaks has varied in prior ana-

lyses. Outbreaks of WNV in Europe in 2010, for example, were

preceded two to four weeks earlier by warmer than average condi-

tions, but the outbreaks were less clearly associated with relative hu-

midity and rainfall (Paz et al. 2013). Similarly, warmer than average

winter temperatures and higher than average rainfall preceded the

2012 outbreak in Dallas, TX, but variables that measured rainfall

were not significant in a multivariate analysis (Chung et al. 2013).

The purpose of our study was twofold. First, we assessed the

ability of a previously published model of WNV mosquito infection

developed for the Chicago region (Ruiz et al. 2010) to predict infec-

tion for a subset of that region—specifically for DuPage County, IL.

For this objective, we compared the measured WNV mosquito infec-

tion rate (MIR) for the period from 2004 to 2013 with the MIR esti-

mated by a linear model that resulted from the prior work (see

Supplementary Materials [online only]), referred to henceforth as

the “legacy model.” Then, we worked with public health and mos-

quito abatement personnel in DuPage County in 2014 to learn about

the local characteristics of mosquito testing and delivery of public

health warnings, so that a predictive model for WNV could be de-

veloped and implemented effectively in this setting. Second, we

refined the legacy model both to develop a model that takes into ac-

count the local conditions and to exploit weather data more fully by

considering interaction effects between rainfall and temperature.

The broader context of this work is to provide a practical, generaliz-

able, and operationally valid approach to predicting WNV mosquito

infection that can be incorporated into public health assessments

using data from prior weather conditions.

Materials and Methods

Study Region
DuPage County, IL, is located west of the city of Chicago (Fig. 1). It

comprises an area of 848 km2 and is the second most populous

county in the state of Illinois, with a population of 932,126 in 2013

(US Census Bureau). Mosquito control in the county is organized

through a combination of mosquito abatement districts, townships,

municipalities, and several large landholders. The study period of

interest was from 2005 to 2014, and model development included

data on weather conditions and mosquito infection rates during this

period. All data were organized by week, with weeks starting on

Saturday.

Weather Data
Daily temperature and precipitation measures were based on two

local weather stations: Midway (MDW) and O’Hare (ORD)

(Fig. 1). Weekly precipitation (rainfall in cm) was calculated from

the daily average for each week from the two stations. Weekly

Fig. 1. Map of the study region with the two weather station locations and the

average number of trap locations at which mosquitoes were tested. The leg-

acy model was developed from data combined from Cook and DuPage coun-

ties. The current objectives focus on DuPage County, only. The average

number of traps is for the years from 2005 to 2014 summarized for hexagons

of 200 hectares. (Online figure in color.)
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temperature was measured as the mean of the temperature (�C)

from the daily temperature readings from the two stations.

Temperature data were further used to calculate a variable called a

“Degree Week” (DW) constructed similarly to the more common

Degree Day, but with differences accumulated over weeks, rather

than days (Ruiz et al. 2010). The DW is the cumulative sum of the

difference of all prior weekly temperatures from a threshold value of

22�C. The temperature threshold of 22�C was used because com-

pared to other values, it led to the highest correlation between DW

and the weekly local MIR based on cross-correlations across a range

of threshold values from 10� to 24�C and time lags from 1 to 10 wk

(Baker et al. 1984, Curriero et al. 2005, Kunkle et al. 2006). For a

given week: DDW¼Tmean�Tbase if the weekly Temperature

(Tmean) is greater than the threshold (Tbase¼22�C) and 0 otherwise.

To remove the seasonal trend from the model, weather variables

were measured as the weekly differences from the 30-year Climate

Normals for 1981–2010, provided by the U.S. National Weather

Service (Fig. 2). These differences captured the patterns outside the

seasonal trends and focused the analysis on characterizing how

weeks differed from the expected values. We also considered vari-

ables that measured the prior year’s average precipitation as was

done in Ruiz et al. (2010). To improve our understanding of this re-

lationship with MIR, we considered the effect of the average precipi-

tation for four equal parts of the prior year starting with week 1,

rather than the year as a whole.

Mosquito Data
The results of mosquito pools tested for WNV during the years from

2005 to 2013 from specimens collected from gravid traps located in

DuPage County were provided by the Illinois Department of Public

Health (IDPH). These data were submitted to the IDPH Web Portal,

where Illinois agencies upload WNV mosquito test results. For 2014

data, mosquito test results were received directly from the DuPage

County Department of Public Health. Test results were selected to

include only the most common female vector species mosquitoes,

which in this region are Culex pipiens and Culex restuans (Hamer

et al. 2008, Andreadis 2012). PCR and VecTests were reported from

2005 to 2007 and PCR and RAMP tests, from 2009 to 2014. PCR

tests comprised from 49 percent to 65 percent of all samples, de-

pending on the year. The IDPH protocol stipulates pool sizes no

larger than 50 individuals, and 19,115 (99 percent) of the 19,345

pools tested were within this guideline. The number of gravid trap

locations in the study region during the years of interest varied

from 136 trap locations in 2007 to 72 in 2014 (Fig. 1). Test result

data were grouped by week and the MIR was calculated for a

given week where: minimum infection rate¼1000� (number of

positive pools)/ (total number of mosquitoes in pools tested), using

the CDC Excel Add-in for pooled infection rates (Biggerstaff

2009). As with the weather data, the MIR variable was calculated

as the difference from the countywide average MIR from 2005–

2013 (Fig. 2).
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Fig. 2 (A) Average weekly Mosquito Infection Rate (MIR) with normal precipitation and (B) average MIR with normal temperature. The average MIR is a weekly

average from the DuPage County study area from 2005 to 2014. (Online figure in color.)
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Model Development
To determine how well the legacy model published in Ruiz et al.

(2010) performed for DuPage County alone, we first used the coeffi-

cients from the weather-only (MIR independent) version of this

model and local weather station data and compared visually the ac-

tual MIR for DuPage County with the predicted weekly MIR values.

For the new model, initially, we considered all weather variables—

including 1–8 wk lags of temperature and rainfall and the prior

year’s precipitation measured in quarters, halves, and the full year.

We used Pearson’s correlation r values to assess the strength of asso-

ciations between weather variables and MIR at different time lags to

determine how far back in time to include weekly lagged weather

variables and to determine the relative strength of the associations

with prior seasons’ precipitation.

Using the same general approach as the legacy model, we de-

veloped new linear regression models to predict the weekly DuPage

County MIR. All models were fitted using the least squares method

with the R package stats (R Development Core Team 2013). We se-

lected the model variables using adjusted R2 (R2adj) and Akaike

Information Criteria (AIC) with both backward and forward step-

wise regression with a significance level threshold of a¼0.1.

Calendar weeks 18–38 (from the end of April to mid-September)

from each year were used to develop the model. Data were treated

as a weekly time series, with weekly weather data starting four

weeks prior to the MIR data, to account for the temporal lags prior

to the first MIR measurement in week 18.

We investigated the effect of the temporal autocorrelation of

MIR by developing MIR lag dependent models that included prior

levels of MIR to predict future levels. We then added all interaction

terms between the temperature and precipitation weekly lagged

weather variables in interactions models. One important practical

goal was to determine if it was possible to use the MIR measured

from mosquitoes collected and tested during the current season for

real-time predictions. Thus, we compared four model types in the

model development phase: MIR dependent models without and

with interaction terms, and MIR independent models without and

with interaction terms.

The new models for DuPage County were fitted initially using

data from the years 2005 through 2012, while data from 2013 and

2014 were used to test the models’ predictive ability. Since the dif-

ference from the weekly average MIR was used to fit the model, the

MIR weekly averages were added to the model estimates to produce

the predicted MIR values. The predicted residual sum of squares

(PRESS), calculated as the sum of squared errors of out-of-sample

prediction values for 2005 to 2013, was used as a measure to

compare the model predictions (Chaves and Pascual 2007). Out-of-

sample predictions were made by randomly dropping one weekly

observation at a time to predict, while using the remainder of the

data to fit the model. Once we selected the best model for DuPage

County and were reaching the end of the 2014 mosquito season, we

refit the model including the year 2013 data to recalculate and im-

prove the models’ coefficients. Finally, we compared the best new

local model with the legacy model predictions, using the mean

square prediction error (MSPE) and standard error (SE) of MSPE for

model prediction for the year 2014, a year that was not used to fit

the coefficients of either of the two models.

Results

Data Exploration
During the study period, the three years with the highest rates of

human illness in DuPage County were 2005, 2006, and 2012, with

at least 40 or more cases of WNV illness (Table 1). These years also

had high average mosquito infection rates of 5.57, 6.88, and 8.74,

respectively. In the two years 2010 and 2013, average MIR was

similar to the years with more human illness, but the peak MIR

week was later. Weekly precipitation was often lower in the three

weeks prior to the peak MIR and the DW temperature higher at the

peak MIR week during higher MIR years.

The initial comparison between the actual MIR and predicted

MIR using the legacy model for DuPage County indicated that the

model captured the main trend of infection rates but did not always

correctly estimate the amplitude or timing of mosquito infection, es-

pecially in years with low infection rates (Fig. 3A).

Weekly average precipitation showed moderate correlation with

MIR. The assessment of correlations between weather variables and

MIR at different weekly time lags determined that the average

weekly precipitation and DW were most strongly correlated with

MIR at lags 1–4, with correlation dropping after a 4-wk lag (Fig. 4).

The correlation between MIR and DW was particularly strong at

short lags and showed a clear pattern of decreasing correlation with

increased time lag. The Pearson’s correlations between MIR and

lagged MIR were 0.88 (n¼209, P<0.0001) at 1 wk and 0.73

(n¼208, P<0.0001) at 2 wk. We found that the average precipita-

tion of weeks 27–39 of the previous year showed the highest nega-

tive correlation with MIR (Table 2). Therefore, we considered this

variable in the new DuPage County MIR model.

Table 1. DuPage County West Nile virus-related annual conditions data summary

Year MIR mean (SD) Week of max

MIR (peak)

Avg Prec. (cm) of 3 wk

before peak weeka

DW at peak

weeka

WNV human

cases

2005 5.57 (6.14) 32 �0.74 11.95 47

2006 6.88 (8.50) 34 �0.68 6.67 43

2007 2.76 (3.18) 33 1.23 �1.52 10

2008 1.13 (1.77) 37 0.59 �2.31 1

2009 0.78 (0.77) 37 0.36 �5.22 0

2010 5.66 (6.90) 35 �1.61 16.98 17

2011 2.63 (3.73) 36 �0.77 12.46 2

2012 8.74 (7.91) 32 �0.08 29.02 56

2013 4.52 (5.56) 36 �1.40 5.42 6

2014 3.27 (5.07) 35 3.42 –0.57 6

a Differences from weekly averages using the 30-yr Normal of both temperature and precipitation.
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Fig. 3. (A) Measured MIR and legacy model estimates (Predicted MIR¼aþ0.35 (3wk Prec. moving average at 3-wk lag)þ0.42 (DW at 1-wk lag) � 1.57 (previous

year prec.)) (MSPE* 2.640). (B) Measured MIR and new model estimates with interactions (MSPE 1.826). *Mean squared prediction error. Supplementary

Material (online only) includes a graph of the full range of years shown as a subset of four years in Figure 3A. (Online figure in color.)
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Model Selection
After observing the timing of data availability following mosquito col-

lection and testing in the county, we determined that the data for a 2-

wk lagged autoregressive MIR term may be available for use in a real-

time prediction model, but the data would not be available in time for

including the 1-wk lagged MIR. Initial model diagnostics revealed add-

itional temporal correlation among the residuals, even after the seasonal

de-trending of MIR. Thus, we also included the temporal variable week

as a predictor. Week was a more significant and influential variable in

the MIR-independent models. The four best models, after AIC variable

selection, based on the R2
adj and the smallest AIC included variables sig-

nificant with P<0.1. As a last step, the least important interaction

terms were also excluded in cases where the model fits were not signifi-

cantly changed as a result. From 6 to 19 variables were selected for the

four models (Table 3).

Comparing model structures, two things became clear. First,

in the models that included prior MIR (models 1 and 3), MIR

had an exceptionally strong effect on the model prediction in all

cases; and second, the interaction terms significantly improved

the model fit. The MIR-dependent model with interaction effects

(model 3) explained the most variation (R2
adj¼0.721;

AIC¼315.2), but the strong contribution of the interaction

terms was seen especially when MIR from previous weeks was

not included in the model (comparison of model 2 and model 4).

Though the autoregressive MIR term was an important factor

statistically, we determined that its inclusion in the model could

overwhelm the effect of weather on MIR prediction. In other

words, the MIR autoregressive terms tended to mimic the prior

weeks’ MIR pattern, making predictions less sensitive to actual

changes in weather.

Based on these observations, we decided that the MIR-

independent models were preferred. They modeled more clearly the

relationship of next week’s MIR with the weather variables and

obviated the need to wait for field-based collections and testing. We

then considered whether implementation of the more complex inter-

action term model was warranted over a simpler model. For DuPage

County, the best independent main effects model (model 2) ex-

plained only about half of the variation in MIR (R2
adj¼0.451;

AIC¼409.0), whereas the best MIR-independent 2nd order inter-

action model (model 4) explained 66 percent (AIC¼353.5). For

these reasons, we selected the latter model for implementation. The

larger PRESS statistic of 0.537 of model 4 also showed the strength

of this model over model 2 (PRESS¼0.481). Quadratic terms were

also tested in model construction due to a possible quadratic rela-

tionship between MIR and DW lags seen in the exploratory analysis,

but these did not improve the model. Finally, comparing the best

local model with the legacy model, the 2014 MSPE and SE of the

new local DuPage model was 4.54 and 1.70, respectively, which

was lower (less error) when compared to the legacy model MSPE of

5.52 and SE 2.08.

Table 2. Pearson’s correlation (r) between MIR and the previous year’s average precipitation over blocks of 52, 26, and 13 wk

Values Wk 1–52 Wk 1–26 Wk 27–52 Wk 1–13 Wk 14–26 Wk 27–39 Wk 40–52

r �0.262 0.014 �0.439 �0.063 0.048 �0.460 �0.091

P-value < 0.001 0.853 < 0.001 0.391 0.514 < 0.001 0.213

Table 3. Variable effects (standard errors) and fit of four model types: 1) Main effect model dependent on MIR, 2) Main effect model inde-

pendent of MIR, 3) Interaction model dependent on MIR, 4) Interaction model independent of MIR

Terms Model 1 Model 2 Model 3 Model 4

R2 adjusted 0.661 0.511 0.721 0.658

PRESS 0.635 0.481 0.635 0.537

AIC 340.6 409.0 315.2 353.5

Main Effects (at week lag)

MIR (2nd order) 0.14(0.02)*** 0.11(0.02)***

Week �0.08(0.05) �0.25(0.06)*** �0.10(0.05)* �0.23 (0.05)***

Prec. (1) 0.06(0.04) 0.09(0.05)*

Prec. (2) �0.06(0.04) �0.09(0.05) �0.05(0.04) �0.03(0.05)

Prec. (3) �0.07(0.04) �0.09(0.05)

DW (1) 0.72(0.12)*** 0.99(0.14)*** 1.12(0.23)*** 1.21(0.25)***

DW (2) 0.01(0.32) 0.13(0.36)

DW (3) �0.59(0.32) �0.83(0.37)*

DW (4) �0.53(0.11)*** �0.41(0.13)** 0.01(0.21) 0.42(0.26)

Previous Year Prec. (wks 27–39) �0.14 (0.05)*** �0.30(0.05)*** �0.08(0.04) �0.18(0.05)***

Interaction Terms

Prec. (1)�DW (2) �0.83(0.20)*** �1.15(0.22)***

Prec. (1)�DW (3) 0.86(0.20)*** 1.13(0.22)***

Prec. (2)�DW (2) 0.89(0.37)* 1.29(0.41)**

Prec. (2)�DW (3) �1.71(0.51)** �2.53(0.57)***

Prec. (2)�DW (4) 0.78(0.22)*** 1.18(0.24)***

Prec. (3)�DW(1) 0.72(0.26)** 0.83(0.29)**

Prec. (3)�DW(2) �0.68(0.25)** �0.85(0.28)**

DW(2)�DW(4) �0.12(0.03)*** �0.71(0.17)***

DW(2)�DW(3) 0.55(0.18)**

R2 adjusted and predicted residual sum of squared errors (PRESS) are reported for each model. * indicated the variable is significant at 5% level, ** significant

at 1% level, and *** significant at 0.1% level.
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Model Inference
The best model’s final variable selection included weekly precipita-

tion (prec) at 1 to 3 wk lags, weekly DW at 1 to 4 wk lags, the aver-

age precipitation in the third quarter of the previous year (previous

year prec. weeks 27–39), and 9 interaction terms, for a total of 17

factors (Table 3). All of the included terms had significant effects at

a¼0.1 on MIR predictions. As with the legacy model, DW had a

larger overall effect on infection rate than precipitation.

Considering the overall effect of the weather variables, an in-

crease in average DW in the four prior weeks led to higher than

average infection rate estimates. Precipitation effects varied, how-

ever, with a positive effect of rainfall in the week immediately prior,

but a negative effect in the second and third prior weeks. Unlike

DW, rainfall four weeks prior did not have an effect on the model

estimates. The strongest main effects variable was DW with a 1-wk

lag with an effect of 1.10. For precipitation, the strongest variable

was lower than average precipitation during weeks 27–39 of the pre-

vious year, which led to higher MIR estimates with an effect of

�0.21.

Discussion

Since temperature and precipitation are largely interdependent

events, interaction terms more realistically represented the relation-

ship between temperature and precipitation and their combined ef-

fect on infection rate. This was an important improvement over the

legacy model and provided insight into how weather affected the

mosquito infection rate. In particular, the interaction terms revealed

that though higher DW generally increased MIR, higher DW two

weeks prior in combination with higher than average precipitation

in weeks 1, 2, and 3 prior each resulted in lower MIR. In other

words, higher precipitation slightly reduced the magnitude of

temperature’s effect on MIR, as seen by the effect of DW on MIR

decreasing from 2.41 to a magnitude of 2.16 when the average pre-

cipitation in preceding weeks is below average by 1.85 cm (Fig. 5A).

In addition, with lower than average precipitation, temperature be-

came an even stronger predictor of MIR (Fig. 5A) and with lower

than average temperatures, precipitation had minimal to no effect

on MIR (Fig. 5B). Refer to the Supplementary Materials (online

only) for figures with all interaction plots.

The legacy model (Ruiz et al 2010) captured the overall shape of

the mosquito infection curve when applied to a subregion of the

area for which it was developed, but these significant improvements

were possible by developing a new model to account for local wea-

ther conditions, by using the local MIR, by introducing additional

terms, and by using more years of data in the model. We found that

the general linear regression approach used by the legacy model,

with MIR based on prior weather conditions, provided a reprodu-

cible methodology to estimate MIR in a location and time period

that was not part of the original model. The assessment of the use of

prior MIR in the new DuPage County model led us to conclude that

a model that is not dependent on MIR measured in previous weeks

is both statistically sound and operationally preferred. In situations

where the MIR can be reliably measured across the entire study re-

gion, the MIR-dependent model may give good predictions most

weeks, but with the caution that a prediction immediately after a

rapid change in weather may not capture the true effect of weather

and thus overemphasize the effect of past MIR. The inclusion of sig-

nificant interaction terms between rainfall and temperature greatly

improved the model’s fit and provided more detailed insight into the

relationship between weather and mosquito infection rate.

Both higher temperature and below average precipitation led to

an increase in MIR, which conforms to prior expectations (Shaman

et al. 2005, Paz and Albersheim 2008, Paz et al. 2013).

Fig. 5. Interaction plots between the variables DW and precipitation of preceding weeks and the variable MIR. All variables are measured as the difference from

the weekly average. Covariates were scaled before plotting. (A) Effect of DW when precipitation is low/high. Equation of solid line: MIR¼�0.003þ 2.41 * DW. (B)

Effect of precipitation when DW is low/high. Equation of solid line: MIR¼�0.003 � 0.39 * prec. (Online figure in color.)
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Additionally, temperature had a greater influence than precipitation

on mosquito infection as demonstrated in the results of all four mod-

els, where the effect of DW had a much stronger effect than the pre-

cipitation variables (see Table 3). Significant interactions revealed

that when temperature was much lower than average, low precipita-

tion had little to no effect on the prediction and when precipitation

was much lower than average, temperature had an even greater in-

fluence. It is this second situation that is most likely to lead to illness

from WNV, and we recommend that public health personnel should

develop the information they provide to the public on the risk of

WNV in the following week by incorporating both the predicted

MIR and the prior weather patterns.

Because lower than average precipitation during weeks 27–39 of

the previous year resulted in higher MIR during the current mos-

quito season, the next summer’s MIR can be approximated prior to

the onset of the WNV season, a point also made by Hahn et al.

(2015). Reasons behind the significance of the previous fall and win-

ter’s precipitation remain unclear. It is possible, for example, that

less rainfall during the fall and winter are correlated with the

amount of rainfall during later periods, and the effect is indirect ra-

ther than direct. It is also possible that this variable improves the

model mostly during the early part of the season, and it may not be

as important for the critical period of virus amplification. Less mois-

ture in the soil at the start of the season might lead to a more patchy

distribution of mosquito larval sites, thus influencing spatial pat-

terns of interactions between birds and mosquitoes. Vegetation char-

acteristics, related to the avian hosts and their interactions with

WNV vectors, may also be affected by weather (Gibbs et al. 2006,

LaDeau et al. 2008). Mosquito abundance may be higher following

a dry fall due to a reduction of predator species (Walsh et al. 2008).

Abundance may also be affected by a mild winter, with higher sur-

vival rates of overwintering Culex pipiens and restuans, while cooler

weather earlier in the fall may lead to earlier, more successful hiber-

nation, and earlier warmer conditions in the spring could provide

conditions for early emergence (Walsh et al. 2008). The simple lin-

ear models used in the current study would not be suitable to deter-

mine these complex biological interactions. However, both

precipitation and temperature during the prior year and the winter

and spring weeks leading up to mosquito season of the same year

should be evaluated in future work.

Several factors may influence the calculation of MIR estimates

used to build the models. For WNV surveillance, the best policy

management decisions are often tempered by funding and public

perceptions related to pesticide use and to the risk of human illness

(Shaw et al. 2010, Tedesco et al. 2010, Dickenson and Paskewitz

2012). Thus, temporal and spatial variability in testing effort and in

mosquito abatement is likely, but it is difficult to measure. Pooled

samples for testing mosquitoes are another issue. The testing of mos-

quitoes is usually done with pools of variable size, rather than test-

ing individuals. This characteristic, in combination with the relative

inability to discriminate between latent and active infection levels,

and the differences in results from different testing methods can lead

to errors in the measurement of mosquito infection rates

(Bustamante and Lord 2010, Speybroeck et al. 2012). Although of

interest from a research perspective, these measures are not easily

managed across administrative areas, and different approaches in

other places may need to be considered if this MIR model is applied

in other locations.

An important area of research is to explore more fully the effects

of weather on avian hosts, mosquito abundance, and human behav-

ior relative to the risk of WNV illness. The relationship between

mosquito infection and the abundance of Culex vectors could not be

assessed in our analysis, so the model does not use a vector index

measure, which is often used to determine the risk of human expos-

ure (e.g., Chung et al. 2013). Abundance measures were not avail-

able in this study because the number of tested mosquitoes, not the

full count from each collection was recorded in the IDPH database.

DuPage County did have some light trap and larval sampling to

monitor vector mosquito abundance, but these were not collected

systematically across all entities and could not be incorporated into

the model.

One future analysis would be to determine how weather influ-

ences the abundance of vector mosquito populations both tempor-

ally and spatially (see Yoo 2014 for example), and develop an

approach to incorporate this into predictions of MIR. For example,

Lebl et al. (2013) analyzed light trap counts of Culex mosquitoes

relative to weather in northeast Illinois and found abundance was

positively correlated with temperature during the prior two weeks

and negatively associated with increased wind speed. Chaves et al.

(2013) found that Culex pipiens abundance in the island of Jeju-do

Korea was positively associated with temperature, but with hetero-

geneities at local scales, as mosquito abundance decreased with rain-

fall in the north, while it increased with minimum temperature in

the south. Morin and Comrie (2013) developed a climate-based ap-

proach to link temperature and rainfall conditions in the southern

United States to the population dynamics of the WNV vector Culex

quinquefasciatus and extended their approach to consider future

conditions under climate change, finding that dry and hot conditions

may reduce populations. Kunkel et al. (2006) used a long-term

database on vector mosquito abundance in Central Illinois to link

weather to the so-called “crossover” of the early-season dominance

of Culex restuans that gives way to the later-season Culex pipiens.

The timing of their crossover was related to weather and often coin-

cided with WNV amplification (Westcott et al. 2011). Studies that

incorporate both biotic and abiotic factors to model mosquito abun-

dance are relatively rare, and future work should be directed in this

area to create a more nuanced WNV risk estimate.

The main intent of our work was to build a stable local model

that would provide a reliable way to predict MIR quickly and effect-

ively. With our model, we were able to provide regionally calibrated

model-based estimates of MIR two to three weeks sooner than MIR

estimation that needed test results from mosquitoes collected by a

variety of agencies to be completed by all groups and compiled into

a common MIR value. Of immediate interest would be to apply our

methods to other locations to develop a similar weather-only model

for further comparison where vegetation and landscape factors are

different from those in northern Illinois. We do not expect that our

model will apply to all other locations, but we expect that its general

structure can form a template for similar MIR prediction models

elsewhere and ultimately may be a way to estimate MIR, even in the

absence of lab testing for WNV.

Supplementary Data

Supplementary data are available at Journal of Medical Entomology online.
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