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A B S T R A C T

Gyroviruses are small, single stranded DNA viruses in the family Anelloviridae. In chickens, the type virus
(chicken anemia virus; CAV) causes epidemic disease in poultry flocks worldwide. In 2007 and 2008, young
crested screamers (Chauna torquata) at a zoo in Wisconsin, USA, died of neurologic disease with clinical and
pathological features resembling CAV infection. Conventional diagnostics were negative, but molecular analyses
revealed coinfection of an affected bird with three variants of a novel Gyrovirus lineage, GyV10. Analysis of ten
additional screamers from this and another zoo revealed infection in all but one bird, with co-infections and
persistent infections common. The association between GyV10 (“screamer anemia virus,” provisionally) and the
disease remains unproven, but certain immunological and neurologic features of the syndrome would expand the
known pathologic consequences of Gyrovirus infection. To control the virus, autogenous vaccines, environmental
decontamination, and management strategies to limit vertical and horizontal transmission might prove effective.

1. Introduction

Gyroviruses (family Anelloviridae, genus Gyrovirus; Rosario et al.,
2017) are an economically significant cause of poultry disease world-
wide. The type species, chicken anemia virus (CAV), was first isolated
in 1974 during an epidemic of delayed growth, anemia, abnormal
feathers, and leg paralysis in chickens (Gallus gallus domesticus) in
Japan, traced to a vaccine for Mareck's disease (caused by an alpha-
herpesvirus; family Herpesviridae, genus Mardivirus) contaminated with
reticuloendotheliosis virus (family Retroviridae, genus Gammaretrovirus)
(Taniguchi et al., 1977; Yuasa et al., 1979, 1976). CAV is im-
munosuppressive and remains a major cause of morbidity and mortality
in chickens, alone and in combination with other agents, and it is also a
persistently problematic contaminant of poultry vaccines (Amer et al.,
2011; Balamurugan and Kataria, 2006; Marin et al., 2013; Varela et al.,
2014).

Since its discovery, CAV has been found in chickens on every con-
tinent except Antarctica: Africa (Ducatez et al., 2006; Oluwayelu et al.,
2008; Smuts, 2014; Snoeck et al., 2012); Asia (Bhatt et al., 2011; Eltahir
et al., 2011; Islam et al., 2002; Kim et al., 2010; Kye et al., 2013;
Nayabian and Mardani, 2013); Australia (Brown et al., 2000); Europe

(Bougiouklis et al., 2007; Chettle et al., 1989; de Wit et al., 2004;
Krapez et al., 2006); North America (Eregae et al., 2014; Ledesma et al.,
2001; Toro et al., 2006; van Santen et al., 2001); and South America
(Craig et al., 2009; Simionatto et al., 2006). Phylogenetic studies de-
monstrate CAV variants to be monophyletic within the genus Gyrovirus,
with sub-clades showing little to no geographic clustering, probably
indicating global spread through the international poultry trade.

Recently, other gyroviruses distinct from CAV have been found in
tissues of a northern fulmar (Fulmarus glacialis; Li et al., 2015) and in
the feces of domestic cats (Felis domesticus; Zhang et al., 2014) and
ferrets (Mustela putorius; Feher et al., 2015). Gyroviruses have also been
found on human skin (Sauvage et al., 2011), in human blood (Biagini
et al., 2013), and in human feces worldwide (Chu et al., 2012; Oude
Munnink et al., 2014; Phan et al., 2013, 2015, 2012; Smuts, 2014;
Zhang et al., 2012). It is currently unclear whether gyroviruses in
mammals represent active infections, passive dietary transit, or en-
vironmental contamination (Phan et al., 2015).

In 2007 and 2008, the Milwaukee County Zoo (MCZ; Wisconsin,
USA) experienced episodes of mortality in crested screamers (Chauna
torquata, order Anseriformes, family Anhimidae), a bird native to wet-
land habitats of southern South America (Stonor, 1939). Affected birds
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were young chicks that displayed severe neurologic signs, including
ataxia and paresis, with resulting disorientation, stumbling, inability to
eat, and subsequent death (“staggers,” colloquially). Here, we describe
the results of an investigation into this condition yielding a new Gyro-
virus lineage, with co-infections and persistent infections frequent in
two populations of captive birds. The study expands our knowledge of
Gyrovirus host range, diversity, and pathogenesis.

2. Materials and methods

2.1. Clinical features, pathology, and diagnostics

On October 23, 2007, a two-month-old screamer chick born to ex-
perienced parents at the Milwaukee County Zoo became severely ataxic
with left side paresis. The bird was anemic, with an elevated white
blood cell count, monocytosis, lymphocytosis, and increased serum le-
vels of alkaline phosphatase and creatine phosphokinase. Various
treatments were attempted, but euthanasia was ultimately necessary
due to progressively worsening disease. Differential diagnoses included
avian encephalomyelitis (caused by avian encephalomyelitis virus, fa-
mily Picornaviridae, genus Tremovirus), aspergillosis (caused by fungi of
the genus Aspergillus), various bacterial and hemoparasitic infections,
and neural larval migrans from the parasitic nematode Baylisascaris
procyonis, which has been documented in screamers in zoological set-
tings where raccoons (Procyon lotor, the definitive host) occur
(Thompson et al., 2008).

2.2. Virus identification and characterization

Because conventional diagnostics yielded negative results (see
below), we retrieved archived plasma samples from this case to identify
potential viral pathogens using metagenomic methods (Kapgate et al.,
2015). Briefly, we extracted total viral nucleic acids from plasma using
the QIAamp MinElute virus kit (Qiagen, Hilden, Germany), omitting
carrier RNA. We then performed sequencing for virus discovery on an
Illumina MiSeq instrument (Reagent Kit v3, 600 cycles, 2× 300nt
paired-end, with 1% Phi-X control DNA; Illumina, Inc., San Diego, USA)
as previously described (Toohey-Kurth et al., 2017). This approach has
proven useful in our hands for detection of other unknown infectious
agents, including at the MCZ (Goldberg et al., 2014; Lee et al., 2016).
Following sequencing, we processed the resulting 413,418 sequence
reads using CLC Genomics Workbench version 8.5 (CLC bio, Aarhus,
Denmark) by trimming low-quality bases (phred quality score< 30)
and discarding short reads (< 75 bp), then subjecting the remaining
375,948 reads to de novo assembly.

This effort resulted in the discovery of a novel Gyrovirus lineage,
GyV10 (see below), including a full viral genome. To explore the re-
lationship of GyV10 to known gyroviruses, we constructed a phyloge-
netic tree of GyV10 and other gyroviruses in GenBank using complete
viral genomic coding sequences. We first aligned sequences using the
Prank algorithm (Loytynoja, 2014) in Translator X (Abascal et al.,
2010) and then analyzed the resulting alignment using the maximum
likelihood method in PhyML (Guindon et al., 2010), with the model of
nucleotide substitution (GTR+ I+ Γ) estimated from the data, and we
displayed the resulting phylogeny using FigTree (Rambaut, 2016).

2.3. Characterization of co-infections and viral variants

To investigate GyV10 co-infection, we performed semi-nested PCR
and amplicon sequencing of sera from five additional screamers (ages 1
month to 1.5 years, obtained between 1998 and 2015) from MCZ,
where similar cases had occurred between June 29, 1998 and
September 18, 2008. For comparison, we also tested archived sera from
five screamers (ages 1–24 years, obtained between 2002 and 2015)
from the Louisville Zoo (Kentucky, USA), where such signs had never
been reported. We first designed primers GyV10_F1 (5´ – TCGTCGGC

AGCGTCAGATGTGTATAAGAGACAGGAATTGCCGTTTAGGCAAGA –
3´), GyV10_R1 (5´ – ATCGTCCTCGTC(T/G)GAAGGTG – 3´), GyV10_F2
(5´ – TCGTCGGCAGCGTCAGAT – 3´) and GyV10_R2 (5´ – GTCTCGTG
GGCTCGGAGATGTGTATAAGAGACAGTCGGAATGAGGAACAGGAAC –
3´) to amplify a 219 (predicted) nucleotide region of the VP2/VP3 gene
and adjacent non-coding region, based on the newly generated
Gyrovirus sequences and published sequences, where primers F1, F2 and
R2 include full or partial adapter sequences (underlined bases) for in-
dexing and direct paired-end sequencing on the Illumina MiSeq plat-
form, which currently has a maximum read length of 300 bp. PCRs were
performed using HiFi HotStart ReadyMix (Kappa Biosystems,
Wilmington, MA, USA), with 0.3 µM of primers GyV10_F1 and
GyV10_R1 (external PCR) and primers GyV10_F2 and GyV10_R2 (in-
ternal PCR), with cycling parameters as follows: initial denaturation
and enzyme activation at 95 °C for 3min, followed by 10 “touchdown”
cycles of 98 °C denaturation for 20 s, 72–63 °C annealing (decrease of
1 °C per cycle) for 15 s, and 72 °C extension for 30 s, followed by an
additional 35 cycles of 98 °C denaturation for 20 s, 63 °C annealing for
15 s, and 72 °C extension for 30 s, a final 72 °C extension for 3min, and
a terminal 12 °C indefinite soak. We then electrophoresed PCR products
on 2% agarose gels, visualized gels under ultraviolet light, excised
amplicons, and purified them using the Zymoclean Gel DNA Recovery
Kit (Zymo Research Corporation, Irvine, CA, USA). Subsequently, un-
ique DNA barcodes and Illumina flow-cell adapter sequences were
added using index PCR (Nextera XT v2 Kit, Illumina, Inc., San Diego,
USA), and products were sequenced on an Illumina MiSeq instrument,
as described above.

We trimmed the resulting sequences as described above and trun-
cated them to uniform aligned length (249 positions). To identify co-
infecting viral variants, we collapsed sequences from the same bird at
the same time point using usearch at a 95% sequence identity cutoff
(Edgar, 2010). We aligned these sequences and performed phylogenetic
reconstruction as described above (HKY85 model of nucleotide sub-
stitution).

3. Results

3.1. Clinical features, pathology, and diagnostics

Gross pathological findings on the screamer chick that died in 2007
included dirty and ragged feathers, brown mucoid exudate in the
choana and nostrils, congestion of the lungs, fluid feces within the
cloaca, hyperemia and hemorrhage of the colonic mucosa and ceca,
lack of grossly observable thymus tissue, a small spleen, and dermatitis.
Histopathologic findings included thymic atrophy and lymphoid de-
pletion (Fig. 1), focal lympho-histocytic myocarditis, chronic active
enteritis, focal hepatitis, pineal hypertrophy, focal degenerative en-
cephalopathy with axon degeneration, pyogranulomatous cellulitis and
ulceration of the wing skin (where external lesions were noted). Bac-
terial cultures were negative for Salmonella, Shigella, Aeromonas, Ple-
siomonas, and Campylobacter and yielded only normal, commensal taxa.
Histopathology ruled out baylisascariasis and aspergillosis. Serologic
assays for Aspergillum and avian encephalomyelitis virus were also ne-
gative, as were microscopic evaluations of blood and feces for eu-
karyotic parasites.

3.2. Virus identification and characterization

Unbiased sequencing and subsequent bioinformatics yielded three
contiguous sequences (“contigs”), each showing significant similarity
(blastx E-values 10−6 to 10−66) to the VP1, VP2 and VP3 genes of
viruses within the genus Gyrovirus. The largest of these, designated
GyV10.1 (GenBank accession number MH016740), represented a
complete circular genome of 2195 bases with three overlapping open
reading frames (Fig. 2), showing the characteristic genomic archi-
tecture of viruses within the genus Gyrovirus (Rosario et al., 2017). In
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total, 1451 reads (0.39%) mapped to this contig with an average depth
of coverage of 107. The other two contigs, designated GyV10.2 (1525
bases, representing full VP2 and VP3 genes and a partial VP1 gene;
GenBank accession number MH016741) and GyV10.3 (441 bases, re-
presenting partial VP1, VP2 and VP3 genes; GenBank accession number
MH016742) shared only 82.1% and 77.7% nucleotide identity with
GyV10.1, with 1348 (0.36%) and 33 (0.01%) reads mapping to each,
respectively. A phylogenetic tree (Fig. 2) shows GyV10 to be distant

sister taxon to GyV8 from a northern fulmar and outgroup to the clade
containing CAV and other viruses from human feces and chickens.
Across the coding genome, GyV10 is 50.9 ± 1.1% different at the
nucleotide level and 58.6 ± 2.1% different at the amino acid level
from the type virus, CAV.

3.3. Characterization of co-infections and viral variants

PCR amplification and sequencing yielded an additional 40 viral
variants from nine birds (GenBank accession numbers MH016743-
MH016783), with between 1 and 12 GyV10 sequences per individual
and an average percent nucleotide and amino acid difference among
sequences of 7.6 ± 1.1 and 8.1 ± 2.0, respectively. Phylogenetic
analysis (Fig. 3) shows that the viruses from MCZ and the Louisville zoo
do not form monophyletic groups; rather, certain viral variants appear
in multiple birds from the same zoo (e.g. M1a07, M4a06 and M6b07)
but never in different zoos. Moreover, some birds were clearly co-in-
fected with divergent variants (e.g. L1a04 and L1h04, both obtained
from the same bird on the same date). In several cases, identical se-
quences were recovered from the same bird years apart, most notably
for M3a98 and M3c15, sampled in 1998 and 2015, respectively. Thus, a
diverse population of GyV10 viral variants apparently circulates in
captive screamers, and individual birds can be co-infected with di-
vergent viruses that can persist for years.

4. Discussion and conclusions

Certain key clinical and pathologic features of the newly reported
disease resemble those of chickens infected with CAV (Rosenberger and
Cloud, 1998), including anorexia, enteritis, thymic atrophy and lym-
phoid depletion, secondary subcutaneous bacterial infections, and
dermatitis. The presentation of this case also recalls features of chicken
infectious anemia, which typically affects young chicks after maternal
antibodies have waned (Miller and Schat, 2004; Schat, 2009). However,
the neurologic signs and pathology of this syndrome were unique.
Furthermore, not all infected chicks at MCZ were affected, MCZ kept
screamers successfully from 1998 to 2008 (the zoo's breeding program
was stopped in 2008 due to this disease), and variants of GyV10 were
also present in apparently healthy, older birds from MCZ and the
Louisville Zoo. If GyV10 (“screamer anemia virus,” provisionally) is
causally associated with this disease, the association is probably com-
plex and, as in chickens infected with CAV, may be limited to early life
stages. Importantly, our data do not indicate definitively whether
GyV10 is the cause of this disease in screamers. Making causal in-
ferences from metagenomic data is fraught with difficulties, and ex-
perimental infection is usually necessary to confirm viral etiologies
(Mokili et al., 2012). Experimental infection of screamers (or a suitable
alternative model species) would be required to evaluate the clinical
significance of GyV10. Nevertheless, GyV10 was the only infectious
agent identified in this case, despite extensive diagnostics.

Our findings demonstrate a surprising degree of within-host viral
diversity for GyV10. The affected screamer chick initially examined was
infected with three distinct GyV10 variants differing by approximately
20% at the nucleotide level. Although little is known about evolu-
tionary rates of gyroviruses, it seems unlikely that these three variants
could have evolved de novo from a common ancestor in this chick
during its short (2-month) life. Thus, the bird probably acquired a
mixed infection from its parents or mixed/multiple infections from
other birds in its enclosure. Alternatively, given that the barrier be-
tween exhibit animals and wild animals at zoos such as MCZ is
“permeable,” GyV10 might also have originated from wild birds.
Analysis of serum from nine other infected birds revealed a similar
pattern of frequent co-infection with divergent viral variants, but also
stability of infection over many years in some cases (Fig. 3). This ob-
servation also supports a scenario of mixed initial infection followed by
limited subsequent evolution of viral variants within birds.

Fig. 1. Histopathology of tissues from a crested screamer chick co-infected with
three variants of a novel Gyrovirus lineage, GyV10. A: Spleen 10×. There is
marked lymphoid depletion and prominence of the sheathed capillaries (ellip-
soids), and germinal follicles are not evident. B: Spleen 40×. This higher
magnification view of the spleen reveals ellipsoids (arrow) with reduced
numbers of surrounding lymphocytes. C: Thymus 40×. The thymic tissue
shows atrophy with loss of zonal architecture and prominent depletion of
cortical lymphocytes, and a Hassall's corpuscle (avian variant) is visible in the
medulla (arrow).
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CAV is notoriously difficult to manage because it is resistant to
chemical and thermal inactivation, it can remain latent in gonadal
tissues even in the presence of neutralizing antibodies, and it is readily

transmitted vertically (Miller and Schat, 2004; Rosenberger and Cloud,
1998; Schat, 2009). Management options for gyroviruses in zoos would
therefore appear to be limited. Approved CAV vaccines for use in
chickens are available (Todd, 2000), although, to our knowledge, no
information exists about their ability to induce cross-protective im-
munity or about their safety in birds other than chickens. Nevertheless,
an autogenous vaccine based on the existing CAV system might be
feasible, especially because CAV vaccines can be administered in
drinking water (Todd, 2000). Control of gyroviruses in zoological set-
tings would also likely hinge on management practices that reduce
transmission, such as aggressive decontamination of exhibit spaces
where gyroviruses are found or suspected, as well as early segregation
of healthy chicks from affected nest mates and from parents with a
history of producing affected offspring, to reduce post-natal horizontal
transmission (Pope, 1991).
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