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Abstract

Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the 

role of other organisms with which bats interact in nature is understudied as a contributor to bat 

viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) 

from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features 

suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while 

the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of 

related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high 

infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest 

transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral 

infection of bat parasites). Some “bat-associated” viruses may be epidemiologically linked to bats 

through their ecological associations with invertebrates.
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1. Introduction

Many emerging viral pathogens have their origins in the fruit bats of the Old World (family 

Pteropidae). Pteropid bats are natural reservoir hosts of highly virulent pathogens such as 

Marburg virus, Nipah virus, and Hendra virus, and they are often presumed to host the 

ebolaviruses. Despite extensive studies of bats and their zoonotic or potentially zoonotic 

infections, little is knows about the broader ecology of bat viruses. To date, much emphasis 

has been placed on understanding direct spillover from bats to humans (Brierley et al., 2016; 

Marí Saéz et al., 2015; Plowright et al., 2015). Less effort has been placed on understanding 

the origins of viral diversity in bats or the maintenance of bat-associated viruses in nature. In 

particular, few studies have considered bat viruses in an ecological context that includes not 

only bats but also the diverse other taxa with which bats interact (Kuno and Chang, 2005; 

Malmlov et al., 2017).

Bats (order Chiroptera) are the second largest order of mammals after rodents (order 

Rodentia). Overall, bats host more emerging viruses per species than any other mammalian 

clade (Luis et al., 2013). The underlying ecological and phylogenetic diversity of bats 

contributes to the diversity and richness of viruses that they host (Luis et al., 2013; Webber 

et al., 2017; Willoughby et al., 2017). Other drivers of this viral diversity are varied (Luis et 

al., 2013), including factors related to viral exposure and persistence, such as long lifespans 

relative to body size (Munshi-South and Wilkinson, 2010), population connectivity 

(Plowright et al., 2011), the impacts of prolonged torpor (in some species) on immune 

function (Dempster et al., 1966), and diverse, densely aggregated multispecies roosting that 

can sustain chains of viral transmission (Willoughby et al., 2017).

Bats have close ecological relationships with arthropods (Allen et al., 1956; Goldberg et al., 

2017; Kalka et al., 2008; Kuno and Chang, 2005; Palmer and Gunier, 1975; Sulkin et al., 

1965). Most widely appreciated among these relationships is predation by insectivorous 

bats. Insectivorous bats consume insect biomass from 25% to greater than 100% of their 

body weight each night (Coutts et al., 1973; Kunz et al., 2011, 1995). Insectivorous bats are 

thereby likely exposed to a diversity of arthropod viruses through ingestion (Kuno and 

Chang, 2005), and a broad range of insect-origin viruses have been discovered in the guano 

of insectivorous bats (Kuno and Chang, 2005; Li et al., 2010; Reuter et al., 2014). These 

“dietary viruses” (Li et al., 2010; Reuter et al., 2014; Sulkin et al., 1965) result from passive 

transport through the gastrointestinal tract; however it is unknown whether viral nucleic acid 

or viral particles can cross the gut wall or infect bats in some cases.

Fruit bats, as their common name suggests, are dietary specialists on fruits. Fruit bats are 

among the most important seed dispersers in tropical forests, playing a critical role in forest 

regeneration and other ecosystem services (Kunz et al., 2011; Oleksy et al., 2017, 2015). 

Fruits, however, are themselves complex “ecosystems,” with a diversity of closely associated 
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and often co-evolved arthropods in and on them. For example, one of the most specific fruit-

arthropod associations is the obligate relationship between figs (family Moraceae, genus 

Ficus) and their highly specialized pollinating wasps (families Agaonidae, Chalcidoidea)

(Yang et al., 2015). The “fruit” of the fig tree (syconium) is in fact the flower of the plant. 

The female wasp lays eggs in the syconium and dies. Her hatching male offspring tunnel 

through the “fruit” and die without exiting, while the female offspring exit through these 

tunnels, carrying pollen to another tree (Cook and West, 2005). Hammer-headed fruit bats 

(Hypsignathus monstrosus), the focus of our study, consume figs as a primary food source, 

although their diet also includes the juice and pulp of mangoes, bananas, guavas, and 

soursops (Bradbury, 1977; Langevin and Barclay, 1990). Fruit bats therefore consume 

insects not merely incidentally, but rather as a significant component of their nutritional 

intake (Barclay et al., 2006; Clulow and Blundell, 2011; Herrera et al., 2002). Although 

opportunities for oral exposure of fruit bats to fruit-associated arthropod viruses are 

plentiful, this type of exposure is generally not considered in studies of viral ecology and 

evolution (Plowright et al., 2015).

Oral exposure of fruit bats to fruit-associated arthropod viruses is notably distinct from the 

transmission of vector-borne viruses by hematophagous arthropods. Vector-borne viruses 

transmitted by mosquitoes, including Chikungunya virus, West Nile virus, and Rift Valley 

fever virus have been detected in Pteropid bats (Boiro et al., 1987; Bunde et al., 2006; Diallo 

et al., 1999). Bat specialist ectoparasites such as bat flies (families Nycteribiidae, 

Streblidae) may also play a role as vectors (Dick and Dittmar, 2014). We recently described 

a novel rhabdovirus (family Rhabdovirus, genus Ledantevirus) of nycteribiid bat flies of fruit 

bats in Uganda with phylogenetic and genomic features that ally it with both zoonotic 

rhabdoviruses and insect-adapted viruses (Goldberg et al., 2017).

Here we describe a study of hammer-headed fruit bats in Republic of Congo in which we 

tested blood for viruses by next-generation sequencing (NGS). Our results reveal diverse 

viruses circulating in the blood of these fruit bats, four out of five of which are 

phylogenetically and genomically allied with viruses of arthropods. The new arthropod-

origin viruses include a nodavirus (family Nodaviridae), a dicistrovirus (family 

Dicistroviridae), and two distinct variants of the recently recognized tombus-like viruses 

(family Tombusviridae). Furthermore, we surveyed the virome of Ceratosolen sp. fig wasps 

and primitive crane flies from bat habitats in Uganda and report novel tumbus-like viruses in 

these insects that are close relatives of the tombus-like virus from the blood of fruit bats, 

offering parallel evidence for the presence of such viruses in bat-associated arthropods. We 

also report high prevalence of a novel hepatitis B-like virus (Family: hepadnaviridae), a 

clearly mammalian virus, circulating in the same population of bats, as well as a high 

prevalence of infection with haemosporidian parasites of the genus Hepatocystis.

2. Results:

From 23 February 2015 to 1 March 2015, we captured 44 hammerheaded fruit bats (10 adult 

females, 29 adult males, 5 juvenile males) from a lekking site (described below). Analysis of 

NGS data from the serum of these bats revealed nucleic acid sequences from five previously 

unknown viruses, with near full genome coverage at sequencing depths of 531 reads per 
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base on average. Of the 44 bats sequenced, 1 (2.3%) contained sequences of a novel 

dicistrovirus (family Dicistroviridae), 1 (2.3%) contained sequences of and a novel 

nodavirus (family Nodaviridae), 3 (6.8%) contained sequences of one of two novel tombus-

like viruses (family Tombusviridae), and 10 (22.7%) contained sequences of a hepatitis B-

like virus (family Hepadnaviridae). Forty-two bats (95.5%) contained sequences of only one 

of these viruses, but 2 coinfected bats (4.5%) contained sequences from two of these viruses. 

Frequencies of infection with each virus are shown in Table 1.

2.1 Dicistrovirus

Dicistroviruses are dicistronic, picorna-like viruses, with two open reading frames (ORF) 

each accessed by independent internal ribosome entry sites (IRES). ORF1 encodes non-

structural elements including a helicase, protease, and polymerase. ORF2 translation is 

mediated through the intergenic region (IGR) IRES and encodes the 4 capsid proteins 

(Nakashima and Uchiumi, 2009). The dicistrovirus we identified was of the genus 

Cripavirus. Cripaviruses are typically pathogenic in invertebrates, with the type strain, 

cricket paralysis virus (CrPV) causing paralysis and death in its natural host (Valles et al., 

2017). Previously, a dicistrovirus was detected in insectivorous bat guano (Li et al., 2010; 

Reuter et al., 2014), presumably having passed through the gut.

1.9% of 728,482 trimmed reads from bat RML-1502254 mapped to what we provisionally 

named hypsignathus dicistrovirus, with deep coverage of both non-overlapping open reading 

frames (ORF1 and ORF2). Contiguous sequences (contigs) were assembled and trimmed 

reads were remapped iteratively to fill gaps and produce a viral consensus sequence of 

~9300 nucleotides in length. The nucleotide identity of the capsid gene of the new virus to 

its closest known relative (drosophila C virus) is 73%. The species demarcation for 

dicistroviruses is accepted to be 90% identity in the capsid protein genes (Valles et al., 

2017), making hypsignathus dicistrovirus a putative new species within the Cripavirus genus 

(Fig. 1A).

RT-PCR using hypsignathus dicistrovirus specific primers (ORF1) confirmed the presence of 

hypsignathus dicistrovirus in the sample identified as positive by NGS. RNA extract from 

water blanks were negative, confirming that the virus was not present as a contaminant of 

the silica columns. Retrospective analysis of samples and blanks run in our lab in the past 

showed no evidence of these viruses, further confirming that they did not result from 

contamination or cross-contamination.

2.2 Nodavirus

Nodavirus genomes are bipartite, with one segment coding for RNA replicase (RNA1: ~3.2 

kb) and one segment (RNA2: ~1.2 kb) coding for the viral capsid precursor protein. 

Nodaviruses are separated into two genera, Alphanodavirus (arthropod infecting) and 

Betanodavirus (fish infecting). The alphanodaviruses, including the type strain Nodamura 

virus, have been detected in a range of insects including Drosophila fruit flies (Aguiar et al., 

2015), hematophageous insects such as mosquitoes (Schuster et al., 2014; Tesh, 1980), and 

phlebotomine sandflies (Aguiar et al., 2015).
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We obtained ~2kb of the RNA replicase of segment RNA1 of a novel alphanodavirus. The 

sequence was most closely related to the type strain, Nodamura virus (Johnson et al., 2004)., 

and clusters with Nodamura virus phylogenetically (Fig. 1B), but with a percent amino acid 

identity of only 54%. For convenience, we refer to this virus as hypnovirus (“hypsignathus 

nodavirus”), indicating its discovery in H. monstrosus and its being a putative new genus 

(Hypnovirus, provisionally), following naming conventions for nodaviruses discovered in 

the feces of canines (Caninovirus) (Conceição-Neto et al., 2017) and in mosquitos 

(Mosinovirus) (Schuster et al., 2014). The next most closely related nodavirus, lutzomyia 

nodavirus, infects phlebotamine sandflies and is considered potentially vector-borne (Aguiar 

et al., 2015).

2.3 Tombus-like viruses

Tombus viruses, named for the type strain tomato bushy stunt virus, are positive sense, 

single stranded RNA viruses that typically infect plants (Stuart et al., 2004). However, 

recently discovered tombus-like viruses have diverse hosts, including marine invertebrates, 

terrestrial arthropods, and potentially free-living or parasitic protists (Dolja and Koonin, 

2018; Shi et al., 2016). Tombus-like viruses have diverse genome architectures, utilizing 

both segmented and non-segmented strategies (Shi et al., 2016).

We detected RNA-dependent RNA polymerase (RDRP) sequences of two distinct clades of 

tombus-like viruses in H. monstrosus (Fig. 1C). The first, tentatively named hypsignathus 

monstrosus tombus-like virus 1, most closely resembled Wuhan insect virus 35 (2221 bp 

genome with two overlapping ORFs), a tombus-like virus discovered in an insect pool from 

Wuhan, China (Shi et al., 2016), but was highly divergent (54% amino acid identity). In two 

other H. monstrosus, we detected similar sequences (96% nucleotide identity) representing a 

second tombus-like virus, tentatively named hypsignathus monstrosus tombus-like virus 

2.Hypsignathus monstrosus tombus-like virus 2 was a ~90% complete genome (3600 bp), 

and by BlastX (Altschul et al., 1990) was most closely related by to Beihai tombus-like virus 

7 (3939 bp genome with 3 ORFS, 2 overlapping), originally detected in panaeid shrimp from 

Beihai, China. However amino acid percent identity was only 39% between hypsignathus 

monstrosus tombuslike virus 2 and Beihai tombus-like virus 7.

In 1 pool of 20 Ceratosolen sp. fig wasps (order Hymenoptera, family Agaonidae) collected 

from a Ficus brachylepis syconium and in 3 pools of two primitive crane flies each (order 

Diptera, family Tanyderidae) from fruit bat habitats in Uganda (hollow roosting trees of the 

genera and species Pterygota mildbraedii, Olea witchii, and Parinari excelsa), we also 

detected tombus-like virus sequences representing partial RDRP genes. These viruses cluster 

with Wuhan insect virus 35 and hypsignathus monstrosus tombus-like virus 1. In particular, 

fig wasp tombus-like virus shared 52.5% identity with hypsignathus monstrosus tombus-like 

virus 1, and the primitive crane fly tombus-like virus shared 60% identity with hypsignathus 

monstrosus tombus-like virus 1, making crane fly tombus-like virus the closest known 

relative of hypsignathus monstrosus tombus-like virus 1.
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2.4 Hepadnaviruses

22.7% of H. monstrosus sampled (10/44) contained a novel hepatitis B-like virus 

provisionally named hypsignathus monstrosus hepatitis B virus (HMHBV). Phylogenetic 

analysis based on ~1000 nt of the hepatitis B polymerase gene (pol) indicates that HMHBV 

clusters with rodent orthohepadnaviruses, sharing 72% nucleotide identity with Woodchuck 

Hepatitis virus (Fig. 1D). In contrast, HMHBV pol shares only 50% nucleotide identity with 

the nearest bat hepadnavirus, tent-making bat hepatitis virus (Drexler et al., 2013).

2.5 Haemosporidian parasites

In addition to the viruses described above, we detected small subunit ribosomal RNA gene 

sequences of the haemosporidian parasite genus Hepatocystis in 43/44 (97.7%) bats 

(GenBank accession numbers MK234751-MK234793). These sequences were very similar 

to each other on average (98.5% ± 0.3% SE nucleotide identity) and were most closely 

related (mean 92.3% ± 1.2% SE nucleotide identity) to Hepatocystis sp. isolate CRNP11 

(GenBank accession number DQ396536) detected in a Horsfield’s fruit bat (Cynopterus 
horsfieldii) in Malaysia. Of the 43 Hepatocystis-infected bats, 3 were also infected with 

hypsignathus monstrosus tombus-like viruses (1 and 2), 1 with hypnovirus and 1 with 

hypsignathus dicistrovirus.

2.6 Analysis of dinucleotide frequencies

In order to explore virus-host associations, we calculated dinucleotide frequencies of the 

novel viral sequences we discovered. The new tombus-noda viruses detected in H. 
monstrosus do not exhibit a depletion of CpG dinucleotides nor an excess of dinucleotide 

TpA, as is typical of mammalian and plant RNA viruses (CpG: Avg 0.94 StDev: 0.09; TpA: 

Avg 0.82, StDev 0.23) (Glass et al., 2007; Upadhyay et al., 2013). Rather, values for both 

CpG and TpA of arthropod tombus-like viruses were statistically indistinguishable from 

Tombus-Noda viruses identified in bats and other mammals (CpG: Two-Tailed P-Value 0.86; 

TpA: 0.5752). Hypsignathus dicistrovirus showed limited CpG depletion and no excess of 

TpA (CpG: 0.67, TpA: 0.77), with both values falling within have a standard deviation of 

average for dicistroviruses (Average CpG: 0.75, StDev: 0.15; Average TpA: 0.78, StDev: 

0.08). To compare these values directly, we conducted two principal components analyses of 

dinucleotide frequencies of the Picornavirales (the picornaviruses and dicistroviruses) and 

the Tombus-Noda clade of viruses (Fig. 2). This analysis shows that variations in 

dinucleotide frequencies can discriminate between related viruses of vertebrates and 

invertebrates, as well those of invertebrates and plants. In both analyses, the viruses we 

detected in H. monstrosus cluster with viruses of arthropods.

3. Discussion

Many bats are “keystone” species, in that their absence would have cascading effects across 

ecosystems (Kunz et al., 2011). This high ecological connectivity may predispose bats to 

exposure to viruses of the species with which they interact in nature, including a diversity of 

arthropod viruses. Our results suggest that, in at least some cases, arthropod viruses can be 

found in bat blood. Although bites by vectors are a well-established route by which 

arthropods transmit viruses to bats (Klimpel and Mehlhom, 2013), our results suggest that 
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other mechanisms may also be important. Oral exposure may be one such mechanism. 

“Fruit” bats (despite their common name) consume a great biomass and diversity of 

arthropods on fruits, not simply incidentally but as an important nutritional component of 

their diets (Barclay et al., 2006; Clulow and Blundell, 2011; Herrera et al., 2002). Our 

discoveries of diverse, novel, arthropod origin viruses in the blood of frugivorous bats 

suggests that such interactions might create an “ecological link” between arthropod and bat 

viromes.

Dicistroviruses have been identified in the feces of mammals, including insectivorous bats 

and even humans, but the fecal virome includes food-associated viruses that may simply 

have passed through the gut (Janowski et al., 2017; Kapoor et al., 2010; Reuter et al., 2014). 

Viruses of plants or insects detected in feces are frequently present due to dietary exposures, 

but may not indicate replicative infection (Balique et al., 2015; Zhang et al., 2006). It 

remains unclear whether arthropod dicistroviruses can replicate in mammalian cells. 

Conflicting reports have been published regarding the culture of taura syndrome virus in 

primate cell lines (Audelo-del-Valle et al., 2003; Pantoja et al., 2004). Our finding of a 

dicistrovirus circulating in the blood of a fruit bat could indicate passage of viral material 

from the gastrointestinal to the circulatory system. We speculate that such a process might 

occur through micro-abrasions during mastication and swallowing of rough food matter 

(Soave, 1966). Given its high level of similarity to drosophila C virus, hypsignathus 

dicistrovirus may have been acquired through ingestion of a dipteran insect associated with 

fruit.

The diversity of tombusviruses, nodaviruses, and the intermediary “tombus-like” viruses 

such as those in the blood of hammer-headed fruit bats has only recently become elucidated 

(Shi et al., 2016). Tombus-noda viruses are a super-family of single stranded positive sense 

RNA viruses with diverse hosts (Longdon et al., 2014). Tombus-noda virus clades contain 

phylogenetic admixtures of viruses of nematodes, marine invertebrates, terrestrial 

invertebrates, plants and mammals. Host-switches have been common over evolutionary 

time, although the current cross-species transmission potential of tombus-noda viruses 

requires further study (Ball et al., 1992; Johnson et al., 2004; Tesh, 1980).

Our parallel discoveries of tombus-like viruses in fig wasps and primitive crane flies 

associated with bat habitats strengthens the argument for a link between bat and arthropod 

viromes. Hypsignathus monstrosus tombus-like virus 1 is most closely related to the new 

tombus-like virus from primitive crane flies, which are commonly associated with habitats 

frequented by forest roosting bats. Also closely related to the tombus-like viruses of 

hammer-headed fruit bats are the new viruses from fig wasps of F. brachylepis figs. These 

wasps have evolved mutualistic relationships with fig trees, laying eggs inside figs and 

serving as their pollinators (Wang et al., 2010). Figs are important foods for many 

frugivorous animals across the tropics, including bats (Shanahan et al., 2001). Hypsignathus 

monstrosus tombus-like virus 2 falls within a clade with Beihai tombus-like virus 8 and 

other marine invertebrate-hosted tombus-like viruses, suggesting the existence of unknown 

tombus-like viruses in invertebrates of terrestrial origin with which fruit bats interact.
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Alternatively, such viruses may be hosted by bat ecto- or endoparasites and thus be 

“hyperparasites” (Dolja and Koonin, 2018; Goldberg et al., 2017; Grybchuk et al., 2018; 

Jansen van Vuren et al., 2017, 2016). For example, a recent study detected fungus-associated 

partitiviruses in human sera and on that basis inferred viral hyperparasitism of a fungal 

pathogen (Phan et al., 2018). In this light, we note the high prevalence of infection of the 

sampled bats with haemosporidian parasites of the genus Hepatocystis, which are common 

in African fruit bats (Perkins and Schaer, 2016; Schaer et al., 2017) The tombus-like viruses 

we detected could be viruses of this or another parasite. Such hierarchical ecological 

associations complicate traditional definitiions of “host” but recall the notion of the 

“holobiont” virome, which considers the assemblage of a host and its parasites as an 

ecological unit (Richardson 2017).

By contrast, hypnovirus, the novel nodavirus we detected in hammer-headed fruit bat sera, is 

likely vector-borne. The type strain, Nodamura virus, was first detected in a mosquito, but 

nodaviruses have been shown to cause lethal infections in insects, mammals, and fish 

(Bailey and Scott, 1973; Shetty et al., 2012; Tesh, 1980). Transfection of Nodamura virus 

genomic RNAs has resulted in replication in a wide variety of cultured cells, showing 

intracellular competence for cross species transmission (Ball et al., 1992). The close 

evolutionary relationships of hypnovirus to the vector-borne alphanodavirus Nodamura virus 

and the more recently discovered phlebotomine sandfly lutzomyia nodavirus (Aguiar et al., 

2015) suggests that this virus was detected at a time of transient viremia following 

transmission by a hematophagous arthropod. Sampling of potential vectors at the lekking 

site would be necessary to identify the vector.

Our detection of a novel hepatitis B virus, hypsignathus monstrosus hepatitis B virus 

(HMHBV), re-enforces the notion that our data accurately reflect the true blood virome of 

this bat population. Hepadnaviruses are small, partially double-stranded DNA viruses with 

circular genomes that infect a diversity of mammals, and the closest relatives of HMHBV 

are hosted by ground squirrels (Testut et al., 1996) and woodchucks (Tyler et al., 1981). 

Rodent hepadnaviruses have been discovered from the Arctic to the temperate regions, and 

bat hepadnaviruses have been detected in the Americas, Asia, and West African 

insectivorous bats (Drexler et al., 2013; Rasche et al., 2016; Wang et al., 2017), but not 

previously, to our knowledge, in African pteropids. HMHBV shared the greatest nucleotide 

identity (72%) in the polymerase gene with woodchuck hepatitis virus, and was only 

distantly related to the most similar known bat hepatitis B virus (Drexler et al., 2013). This 

places HMHBV in what was previously considered the rodent clade of hepatitis B viruses 

(Testut et al., 1996).

Dinucleotide frequency analysis offers further insights into the patterns observed above. 

Dinucleotide frequency can offer insight into viral host adaptation, at least across widely 

divergent host biologies (e.g. vertebrates versus invertebrates, and plants versus 

invertebrates; Babayan et al., 2018; Kapoor et al., 2010; Upadhyay et al., 2014). RNA 

viruses of vertebrates and plants typically show a depletion of CpG dinucleotide, and an 

excess of TpA dinucleotide. By contrast, RNA viruses of invertebrates do not exhibit 

extreme CpG and TpA frequencies (Kapoor et al., 2010; Karlin et al., 1994; Rima and 

McFerran, 1997). The CpG and TpA frequencies of the Tombus-Noda viruses and 
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dicistroviruses that we detected in hammer-headed fruit bats were statistically 

indistinguishable from frequencies in related viruses adapted to the cellular replication 

machinery of arthropods.

Our results bear on a long-standing problem in infectious disease ecology. Some viruses that 

are considered “bat-associated” have not yet been isolated from bats. Most famous among 

these are the ebolaviruses which have yet to be isolated from bats (Leendertz et al., 2016) 

but have been detected in bats by PCR (Goldstein et al., 2018; Leroy et al., 2005) and 

antibody tests (Hayman et al., 2012, 2010; Ogawa et al., 2015; Pourrut et al., 2009, 2007). 

Over evolutionary time, many medically important viral taxa appear to have originated in 

invertebrates, with viruses of mammals in general, and bats in particular, interspersed among 

those of arthropod hosts (Shi et al., 2016). Our results provide a mechanism by which such a 

pattern might occur – namely frequent transmission of invertebrate viruses to bats via non-

vector-borne modes of transmission such as ingestion or hyperparasitism.

For example, we recently documented an unusual rhabdovirus in nycteribiid bat flies 

(obligate hematophagous ectoparasites of bats) on pteropids in Uganda (Goldberg et al., 

2017). This virus is a member of the genus Ledantevirus, which contains the zoonotic Le 

Dantec virus (Woodruff et al., 1977). Members of this viral genus are considered “bat 

associated” despite some never having been found in bats themselves (Blasdell et al., 2015; 

Goldberg et al., 2017). Bats may be associated ecologically and evolutionarily with these 

“bat associated” viruses not as reservoirs, but rather as intermediary hosts of arthropod 

viruses. The discovery of Bombali ebolavirus in Sierra Leone validates the consensus view 

that bats play a role in the ecology of ebolaviruses, but because it was found in two 

sympatric insectivorous bat species the exact nature of its association with bats remains 

unclear (Goldstein et al., 2018). Since the initial discovery of Sudan ebolavirus, it has been 

speculated based on circumstantial evidence that the reservoirs of certain ebolaviruses might 

non-hematophagous arthropods (Leendertz, 2016; Monath, 1999; Preston, 2012). Our results 

support the plausibility of this notion and suggest that occasional arthropod-bat transmission 

under ecologically favorable conditions might account for the sporadic appearance of such 

“bat associated” viruses.

Virus discoveries in apparently discordant hosts and sample types must be carefully 

scrutinized. In rare cases such discoveries have been linked to contaminated laboratory 

reagents (Naccache et al., 2013; Simmons et al., 2011). For example, marine-sourced silica 

in nucleic acid extraction columns has previously been linked to the unlikely presence of a 

marine hybrid parvovirus-like virus in samples from human patients (Naccache et al., 2013). 

Although marine dicistroviruses exist (Bonning and Miller, 2010), hypsignathus 

dicistrovirus is phylogenetically allied with terrestrial dicistroviruses (and absent from other 

samples analyzed previously, concurrently, and subsequently in our lab). Furthermore we 

were able to detect hysignathus dicistrovirus by NGS and RT-PCR amplification only in 

some bat serum samples and not in other bat serum samples or in extraction blanks. 

Hypsignathus dicistrovirus is not therefore a misassigned marine dicistrovirus contaminant 

of the silica columns, but rather a virus in the blood of the bats.
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We also caution that our inferences are based on the detection of viral nucleic acid in the 

serum of bats, and not on detection of live viruses. Although complete genes of naked, 

dietary double-stranded DNA can pass from gut into the serum (Spisák et al., 2013), the 

half-life of unprotected viral RNA is significantly shorter (Chen et al., 2008; Dickson and 

Wilusz, 2011). Unfortunately, biosafety considerations required inactivation of all samples 

prior to processing. Nevertheless, we do not believe the viruses we detected are incidental. 

The coverage and depth of sequencing varied across the viruses discovered, ranging from 

80-100% genome coverage, and up to 500x average coverage depth. Canonical ORFs did 

not contain premature stop codons. Bat and insect samples were sequenced on different 

days, and we have never before sequenced viruses similar to those reported herein.

Overall, our discovery of diverse arthropod origin viruses circulating in the blood of 

hammer-headed fruit bats of the Republic of Congo, as well as our discovery of a new 

mammalian virus related to rodent orthohepadnaviruses, are suggestive of diverse modes of 

viral transmission, all of which may all contribute to the observed diversity of viruses in 

bats. We suspect that cross-species transmission of viruses to bats and other mammals from 

invertebrates may occur with more regularity than has been appreciated, and that arthropods 

may host many “bat associated” viruses that have defied detection in bats themselves. 

Further analysis of these and other samples of arthropods from bat habitats is warranted. 

Future efforts to explore alternative reservoirs of “bat associated” viruses should include 

sampling of invertebrates that are ecologically associated with bats and that may host viruses 

capable of infecting bats.

4. Methods:

4.1 Collection of samples

The study site lies in the buffer corridor of Odzala-Kokoua National Park (OKNP), along 

National Route 2 roughly 100 km southwest of Ouesso in the Republic of the Congo (00° 

54' 33" N and 15° 36' 01" E). Hammer-headed fruit bats (Hypsignathus monstrosus) were 

captured at night using canopy-level mist nets at a lekking site and transported to the 

sampling set-up in cloth bags. After sampling, the bats were released at the location of 

capture. Blood samples were obtained from the cephalic vein and centrifuged in MiniCollect 

Z serum tubes (Greiner Bio-One). Sera was collected and frozen in liquid nitrogen in the 

field and stored at −80°C in Brazzaville, Republic of the Congo, until shipment to the USA. 

All methods approved by Institutional Animal Care and Use Committee of the Rocky 

Mountain Laboratories (NIH ASP #2015-010).

In a related effort, in January 2016, 80 samples of fig wasps (4 pools) from 4 species of figs 

(F. brachylepis, F. spongii, F. mucuso, and F. capensis) were collected from locations in and 

near Kibale and Semliki National Parks, in western Uganda. Briefly, ripe, intact synconia 

were collected from the ground underneath the trees and were opened using sterile 

instruments. Adult fig wasps and larvae (encased in galls) were collected into sterile tubes 

containing DNA/RNA Shield buffer (Zymo Research Corporation, Irvine, CA, USA). 

Primitive crane flies were collected from 4 hollow tree bat roosts (Pterygota mildbraedii, 
Olea witchii, Parinari excelsa, Strombosia scheffleri) using sterile forceps and also placed 
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into sterile tubes containing DNA/RNA Shield buffer. Insect samples were then processed 

using previously described methods (Goldberg et al., 2017).

4.2 Virus detection and characterization

RNA was extracted from samples (200-300 uL of bat serum or homogenized insects), using 

QIAamp MinElute Virus Spin kit (Qiagen Inc., Valencia, CA), without carrier RNA and 

stored at −80°C until shipment on dry ice to the University of Wisconsin-Madison for NGS. 

NGS was performed using methods previously described (Bennett et al., 2016; Toohey-

Kurth et al., 2017). Briefly, RNA was DNAse treated by using the Turbo DNA-free Kit 

(Thermo Fisher Scientific, Inc., Waltham, MA, USA). Extracted, DNAse treated, RNA was 

then converted to double-stranded cDNA (dscDNA) using the Superscript double-stranded 

cDNA Synthesis kit (Invitrogen, Carlsbad, CA, USA) with random hexamer priming of first-

strand synthesis. Double stranded cDNA was purified using Agencourt Ampure XP beads 

(Beckman Coulter, Brea, CA, USA). DscDNA was prepared for paired-end NGS by 

Illumina MiSeq (MiSeq Reagent Kit v3, 300 cycle, Illumina, San Diego, CA, USA) using 

the Nextera XT DNA sample prep kit (Illumina, San Diego, CA, USA). NGS reads were 

analyzed as previously described (Goldberg et al., 2017).

4.3 Nucleotide composition analyses

The relative frequency of CpG dinucleotide pairs was calculated for CDS of each virus 

consensus sequence using the R Biostrings package (Pages et al., 2017). Relative 

dinucleotide frequency is the ratio of the observed to the expected frequency of a particular 

dinucleotide. A dinucleotide is considered underrepresented when the relative dinucleotide 

frequency is <0.78, and overrepresented when >1.22. Statistical analyses were performed in 

the computer package R (R Core Team, 2013). Principal components analysis of relative 

dinucleotide frequencies of all 16 dinucleotides was performed in R using the Stats package.

4.4 Phylogenetics

Maximum likelihood phylogenetic analyses were performed with codon-based alignments of 

polymerase genes. Alignments were created using the MAFFT algorithm (Katoh et al., 

2002) in TranslatorX (Abascal et al., 2010), using Gblocks (Talavera et al., 2007) to exclude 

poorly aligned regions. Maximum likelihood phylogenies were constructed in PhyML 

(Guindon et al., 2010) and displayed utilizing FigTree (Rambaut, Andrew, 2016).

4.5 Quality control RT-PCR

RT-PCR primers were developed for hypsignathus dicistrovirus ORF1 (HDorf1F: 5’ – TTG 

CAG CAA AAC AGT TGA GG – 3’; HDorflR: 5’ - TGA GAC CAC AAA CCC AGA CA 

– 3’) to confirm NGS-based results and to test laboratory reagents as a potential source of 

contamination. RNA from NGS positive sera and water blank negative controls were 

extracted using both trizol and Qiagen column based methods (QIAamp MinElute Virus 

Spin kit; Qiagen Inc., Valencia, CA). RT-PCR was performed using New England Biolabs 

OneTaq One-Step RT-PCR kit (New England Biolabs, Ipswich, Mass.) under standard 

conditions, with the following thermocycling parameters: 48°C for 30 min; 94°C for 60 sec; 

40 cycles at 94°C for 15 sec, 51°C for 30 sec, 68°C for 45 sec; 68°C for 5 min. PCR 
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products were visualized under ultraviolet light on 1.5% agarose gels stained with ethidium 

bromide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Fruit bats from Republic of Congo host diverse RNA viruses of arthropod 

origin.

• Four arthropod viruses were found in the blood of bats at a forest breeding 

site.

• Bats may acquire invertebrate viruses through their diets or from bat parasites.

• “Bat associated” viruses may reside in invertebrates with ecological links to 

bats.
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Figure 1. 
Maximum likelihood phylogenies (1,000 bootstrap replicates) of polymerase genes 

sequences of A. dicistroviruses (~2700 bp), B. nodaviruses (~2000 bp), C. tombus-like 

viruses (~1200 bp), and D. hepadnaviruses (~570 bp). Maximum likelihood phylogenetic 

analyses were performed with codon-based alignments of polymerase genes, with poorly 

aligned regions removed (see text for full description).
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Figure 2. 
Principal components analysis of relative dinucleotide frequencies of Tombus-Noda viruses 

and Picornavirus-dicistroviruses, from a diversity of hosts. The plot shows separation of 

groups by the first principal component, which can be interpreted as the direction, 

uncorrelated to other components, which maximizes the variance of the samples when 

projected onto the component. Points represent individual sequences.
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Table 1:

Novel viruses in Hammerhead fruit bats

Arthropod Origin Vertebrate Origin

Dicistrovirus Nodavirus Tombus-like virus Hepadnavirus

closest relative:
Drosophila C

Virus
Nodamura

Virus RNA 1
Wuhan Insect

Virus 35
Beihai tombus-like

virus 7 Woodchuck Hepatitis Virus

Accession MH310078 MH324435 MH324433 MH324432 MH324435

Percent identity 73% 54% 69% 39% 72%

Genome Coverage 80% 74% 100% 90% 20%

Prevalence (n=44) 2.3% 2.3% 2.3% 4.5% 22.7%

CpG Frequency 0.7 1.0 0.9 0.8 0.7
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