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Multidecade Mortality and a 
Homolog of Hepatitis c Virus in Bald 
eagles (Haliaeetus leucocephalus), 
the national Bird of the USA
tony L. Goldberg1,2*, Samuel D. Sibley1, Marie e. pinkerton1, christopher D. Dunn1, 
Lindsey J. Long3, LeAnn c. White4 & Sean M. Strom3

the bald eagle (Haliaeetus leucocephalus) once experienced near-extinction but has since rebounded. 
for decades, bald eagles near the Wisconsin River, USA, have experienced a lethal syndrome with 
characteristic clinical and pathological features but unknown etiology. Here, we describe a novel 
hepacivirus-like virus (Flaviviridae: Hepacivirus) identified during an investigation of Wisconsin River 
eagle syndrome (WReS). Bald eagle hepacivirus (BeHV) belongs to a divergent clade of avian viruses 
that share features with members of the genera Hepacivirus and Pegivirus. BeHV infected 31.9% of 
eagles spanning 4,254 km of the coterminous USA, with negative strand viral RNA demonstrating 
active replication in liver tissues. Eagles from Wisconsin were approximately 10-fold more likely to be 
infected than eagles from elsewhere. eagle mitochondrial DnA sequences were homogeneous and 
geographically unstructured, likely reflecting a recent population bottleneck, whereas BeHV envelope 
gene sequences showed strong population genetic substructure and isolation by distance, suggesting 
localized transmission. cophylogenetic analyses showed no congruity between eagles and their viruses, 
supporting horizontal rather than vertical transmission. these results expand our knowledge of the 
Flaviviridae, reveal a striking pattern of decoupled host/virus coevolution on a continental scale, and 
highlight knowledge gaps about health and conservation in even the most iconic of wildlife species.

For its majestic splendor, the bald eagle (Haliaeetus leucocephalus) was selected as the emblem of United States of 
America by the Continental Congress of 17821. For millennia prior, the bird was recognized as sacred by diverse 
Native American peoples2. Despite its importance to North American histories and cultures, the bald eagle nearly 
went extinct in the 1960s due to eggshell thinning caused by dichlorodiphenyldichloroethylene (p,p’-DDE), a 
biodegradation product of dichlorodiphenyltrichloroethane (DDT)3,4. The publication of Rachel Carson’s Silent 
Spring in 19625, subsequent banning of agricultural DDT use in the USA and Canada in the early 1970s6, and 
improved protections under the Bald and Golden Eagle Protection Act of 1940 and the Endangered Species Act 
of 19737,8 helped the species recover from a nadir of 487 breeding pairs in the coterminous United States in 1963 
to over 16,000 breeding pairs in 20099–11. The bald eagle was removed from the US federal list of threatened and 
endangered species in 20077. Currently, major causes of bald eagle mortality, especially for birds living near peo-
ple, include poisoning, trauma, electrocution, and illegal hunting12,13.

Infections of bald eagles have been documented since the early 1900s but (with the possible exception of West 
Nile virus14,15) have generally been considered sporadic and incidental10,12,16,17. Among 2,980 bald eagle carcasses 
submitted to the U.S. Geological Survey National Wildlife Health Center (NWHC) in Madison, Wisconsin, USA, 
between 1982 and 2013, only 5.2% of deaths were attributed to infectious diseases12. Documented infectious 
diseases of bald eagles include: ectoparasitoses18,19, helminthoses20–24, aspergillosis25, coccidiosis26, toxoplasmo-
sis27–29, sarcocystosis30–32, leucocytozoonosis33, avian malaria34–36, avian cholera37, mycobacteriosis38,39, tricho-
moniasis40, other bacterioses41–43, avian pox44, herpes45, avian influenza46,47, Newcastle disease48, eastern equine 
encephalitis49, and West Nile encephalitis15. However, many of these infections are known from only single cases 
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or case clusters and affected birds often present with comorbidities, such that the importance of infection for bald 
eagle population health remains unclear.

Since approximately 1994, bald eagles near the lower Wisconsin River in Wisconsin, USA, have experienced 
a lethal and enigmatic clinical syndrome, Wisconsin River eagle syndrome (WRES)50. WRES, which has not 
previously been described in the peer-reviewed literature, has been diagnosed in most years since its initial doc-
umentation, with mortality occurring between November and early April and peaking in January and February. 
Affected birds generally show good body condition, suggesting acute onset, and exhibit severe neurologic deficits 
(weakness, incoordination, tremors, vomiting and seizures). The condition is refractory to treatment, and death 
or euthanasia follow shortly. WRES is characterized by hepatocellular cytoplasmic vacuolation, with vasculitis 
and cerebral microhemorrhages sometimes observed. The neurologic signs and hepatic pathology characteristic 
of WRES initially led to investigations of potential toxic causes, but no suspect chemical compounds have been 
identified. Similarly, testing for known pathogens, including neurotropic viruses such as West Nile virus, has 
failed to identify an infectious etiology.

In an effort to identify the cause of WRES, we examined bald eagle tissues archived at the Wisconsin 
Department of Natural Resources and the NWHC. Submissions of carcasses to these agencies included cases 
from eagles in Wisconsin that had died of WRES as well as eagles from Wisconsin and across the coterminous 
USA that had putatively died from other causes. Given the known susceptibility of raptors to viral encephalitides 
(e.g. West Nile encephalitis15) and the observation of neurologic signs and hepatic pathology in affected eagles, 
we investigated potential viral causes. Our analyses led to the identification of a novel hepacivirus-like virus 
(Flaviviridae: Hepacivirus), the type-virus of which is the globally important human pathogen hepatitis C virus 
(HCV)51. Herein we characterize the virus and describe our subsequent investigations into its distribution across 
the coterminous United States, its potential association with clinical disease, the population genetic structure of 
host and virus, and patterns of host-virus coevolution.

Results
Virus identification and characterization. Next-generation sequencing of reverse-transcribed RNA 
from tissues of nine bald eagles that had died of WRES revealed the presence of a novel virus, which we desig-
nated bald eagle hepacivirus (BeHV; GenBank accession number MN062427). The virus was identified in serum 
from a bird collected on December 29, 2002, from Sauk County, Wisconsin, and the bird displayed hepato-
cellular cytoplasmic vacuolation characteristic of WRES (Fig. 1). The 11,019 nucleotide coding-complete viral 
genome sequence contained a single, 3430 amino acid open reading frame and genomic features characteristic 
of members of the genus Hepacivirus within the family Flaviviridae (Fig. 2A), including a model Kozak sequence 
(AAGAUGG) at the proposed translation initiation site. Across the genome, BeHV is most similar to duck hepa-
civirus (DuHV52) and generally more similar to HCV than to human pegivirus (HPgV), including immediately 
downstream of the E1/E2 junction, where homology between BeHV and other viruses is undiscernible (Fig. 2B). 
Similar to other members of the genus Hepacivirus, BeHV shows clear evidence of intrinsically disordered regions 
spanning the capsid protein and the 5′ half of NS5A53. Predicted cleavage sites are most conserved between BeHV 
and DuHV and show varying levels of conservation between BeHV and other hepaciviruses and pegiviruses 
(Fig. 2C). Phylogenetic analysis indicates that BeHV and DuHV form an avian lineage that is divergent with 
respect to the mammalian hepaciviruses and other hepacivirus-like viruses of non-mammalian hosts (Fig. 3). 
The mammalian hepaciviruses and the non-mammalian hepacivirus-like viruses together form a clade distinct 
from the pegiviruses (Fig. 3).

Nucleotide-level similarity within the 5′UTR, which has proven useful for inferring hepacivirus taxonomy and 
function54–56, is low between BeHV and homologous regions of HCV (50.5%) and the human pegivirus HPgV 
(41.8%). Minimum free energy prediction of RNA secondary structure shows this portion of the BeHV 5′UTR 
to exhibit three large and well-defined stem-loop (SL) structures (Fig. S1). This predicted secondary structure 
more closely resembles that of the 5′UTR of HCV, a member of the genus Hepacivirus, than the 5′UTR of HPgV, a 
member of the genus Pegivirus (Fig. S1), and it also resembles that of rodent hepacivirus56. However, the SL prox-
imal to the polyprotein start codon lacks the obvious pseudoknot structure proposed for several hepaciviruses57, 
and the BeHV internal ribosome entry site (IRES) more closely resembles those of certain pegiviruses, as has been 
noted for DuHV52.

Distribution of BeHV across the coterminous USA. Testing of 47 eagle liver tissues (which we chose to 
perform based on the known hepatic tropism of the hepaciviruses) from Wisconsin and elsewhere in the United 
States (Table S1) using metagenomics and nested rt-PCR revealed 14 additional samples to be positive for BeHV. 
Overall, 15/47 (31.9%) eagle liver samples were positive for BeHV, and these were collected from seven states (KS, 
FL, MN, ND, NE, WA and WI) out of 19 states where samples were available, with infections spanning 4,254 km 
of the coterminous United States (Table S1). Nested rt-PCR targeting negative-strand BeHV RNA produced 
amplicons of the expected size, which we confirmed by Sanger sequencing, indicating active viral replication in 
liver tissues.

Real time quantitative reverse transcription PCR (RT-qPCR) of RNA from liver tissues of the 15 BeHV-positive 
eagles yielded Ct values ranging from 26.1 to 36.4, with an overall mean of 30.26 (Fig. S2). Ct values from liver 
tissues of eagles from Wisconsin (Table S1) were not statistically different from Ct values of liver tissues from 
eagles from elsewhere (Fig. S2). The eagle in which we originally detected BeHV had a Ct value of 31.9, which was 
within the range of Ct values of other positive eagles (Fig. S2).

Between 1995 and 2018, the NWHC received 1188 bald eagle submissions, of which 260 (21.9%) were from 
Wisconsin. Of the 260 eagle submissions from Wisconsin, 28 (10.8%) were diagnosed clinically and histopatho-
logically with WRES. No cases of WRES were diagnosed outside of Wisconsin. Of the 28 eagles diagnosed with 
WRES in Wisconsin, 14 (50.0%) came from counties bordering the lower Wisconsin River. Based on molecular 
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testing of tissues from 47 eagles (described above), the prevalence of BeHV in Wisconsin was 75.0% (95% con-
fidence interval 40.1–93.7%), whereas the prevalence of BeHV elsewhere was 23.1% (95% confidence interval 
12.4–38.5%), making eagles from Wisconsin 9.4 times more likely to test positive for BeHV than eagles from 
elsewhere (odds ratio = 9.406, 95% confidence interval 1.684–77.79; Fisher’s exact P = 0.0086). Similarly, the 
prevalence of BeHV in eagles from counties in Wisconsin where WRES had been diagnosed was 83.3% (95% 
confidence interval 41.8–98.9%), whereas the prevalence of BeHV in eagles from elsewhere was 24.4% (95% 
confidence interval 13.7–39.5%), making eagles from counties in Wisconsin where WRES had been diagnosed 
14.5 times more likely to test positive for BeHV than eagles from elsewhere (odds ratio = 14.470, 95% confidence 
interval 1.782–378.80; Fisher’s exact P = 0.0188).

Host and virus population genetics and coevolution. Nucleotide-level genetic diversity (±standard 
error) among eagle mitochondrial DNA sequences (GenBank accession numbers MN062428-MN062562) was 
low (π = 1.03 × 10−3 ± 2.35 × 10−4). Nucleotide level genetic diversity among virus envelope gene sequences from 
those same eagles (GenBank accession numbers MN062563-MN062576) was higher (π = 4.61 × 10−2 ± 3.43 × 
10−3). Analysis of isolation-by-distance revealed different patterns for hosts and viruses (Fig. 4). Mantel tests of 
matrix correlation indicated no statistically significant correlation between geographic and genetic distances for 
eagle mitochondrial DNA sequences (r = 0.120; 2-tailed P value = 0.254) but a strong and statistically significant 
positive correlation between geographic and genetic distances for envelope gene sequences of viruses infecting 
those same eagles (r = 0.771; 2-tailed P value < 0.0001). Virus pairs tended to sort into clusters of genetic similar-
ity at discrete classes of geographic separation, revealing a spatial signal of viral population genetic substructuring 
across the coterminous USA that was not evident in eagle hosts (Fig. 4).

Phylogenetic analyses of eagle mitochondrial DNA sequences and virus envelope gene sequences yielded dif-
ferent topologies (Fig. 5). Maximum likelihood cladograms (Fig. 5, bottom) were inferred from an 8,266-position 
alignment of concatenated mitochondrial gene sequences of eagles and a 1,395-position alignment of envelope 
gene sequences of viruses using the same methods described for Fig. 3. Eagle sequences showed no apparent phy-
logeographic pattern and branch lengths were short, whereas viral sequences showed evidence of phylogeographic 

Figure 1. Liver from a bald eagle that died from Wisconsin River eagle syndrome stained with hematoxylin and 
eosin at 100x magnification (top) and 400x magnification (bottom), showing diffuse hepatocellular cytoplasmic 
vacuolation characteristic of this condition.
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clustering (e.g. viral sister taxa B and G and the clade consisting of viruses K, N and O) and branch lengths were 
longer (Fig. 5). Cophylogenetic analyses (Fig. 5) showed virus/host pair N and O to be sister taxa and virus/
host pair A and B to be closely related in both phylogenies, but analysis of cophylogenetic association using the 
AxParafit algorithm58 with 99999 permutations revealed no statistically significant overall cophylogenetic struc-
ture between eagle and virus phylogenies (P = 0.139) and only one statistically significant individual association 
(between host/virus pairs N and O; P = 0.013).

Discussion
Bald eagles are an iconic North American wildlife species that has faced myriad challenges. In the 1960s, bald 
eagles were nearly extirpated from the coterminous USA due to the toxic effects of DDT3,4. Banning of DDT in 
the 1970s6 and improved Federal protections7,8 allowed the species to rebound, but eagles still experience signifi-
cant mortality from anthropogenic factors such as poisoning, illegal hunting, trauma, habitat loss, and antagonis-
tic interactions with people12. Our results highlight two additional factors that have received comparatively little 
attention with respect to bald eagle conservation: infectious disease and lack of genetic diversity. We describe a 
novel hepacivirus-like virus, bald eagle hepacivirus (BeHV), discovered during an investigation into Wisconsin 

Figure 2. Genome organization, amino acid similarity, and polyprotein cleavage sites of bald eagle hepacivirus 
(BeHV) and related viruses. A) Genomic organization of BeHV, hepatitis C virus (HCV, the type virus of 
the genus Hepacivirus), and human pegivirus (HpGV; the type virus of the genus Pegivirus). Boxes represent 
mature proteins and are drawn to scale, and lines adjacent to core and NS5B proteins represent untranslated 
regions (UTRs). B) Sliding-window similarity plots across aligned amino acid sequences showing comparisons 
among BeHV, duck hepacivirus (DuHV), hepatitis C virus 1 (HCV-1), Wenling shark virus (WLSV), and 
human pegivirus 1 (HPgV-1). Dashed vertical lines indicate start positions of inferred viral proteins. C) Amino 
acid sequences of BeHV and related viruses adjacent to protease cleavage sites inferred using bioinformatic 
prediction. Predicted cleavage sites for signalase (black triangles), NS2-NS3 protease (gray triangle), and NS3-
NS4A protease (white triangles) are indicated. Amino acid positions of cleavage sites in relation to BeHV are 
shown below the triangles.
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River eagle syndrome, a lethal affliction of bald eagles. We also document remarkably low genetic diversity in 
bald eagles across the coterminous United States, consistent with the species’ recent recovery from a population 
bottleneck11,59.

We discovered BeHV during an attempt to determine the cause of WRES, which has defied etiologic diagnosis 
for decades50, but the role of the virus in clinical disease remains uncertain. We identified the virus in the serum 
of a single affected eagle, but we did not find BeHV in this bird’s brain tissue or in serum or brain tissues from 
eight other eagles that had died of WRES. We also found BeHV in 31.9% of eagle liver samples from across the 
USA. BeHV viremia is therefore likely transient or intermittent, and the site of persistence is probably the liver, 
as is characteristic of hepaciviruses51. Our initial analyses focused on brain and serum were therefore based on 
erroneous assumptions that a neurtropic virus was involved in WRES, because of the neurologic signs observed 
in many affected birds50.

Loss of liver function can lead to hepatic encephalopathy, or accumulation of neurotoxic substances and their 
metabolites, which can cause severe neurologic deficits60–62. Outwardly, the liver pathology characteristic of many 
WRES-affected eagles (e.g. Fig. 1) resembles that in human patients with chronic HCV infection63. Cytoplasmic 
vacuolation in general often follows exposure to viral pathogens64, although this lesion is inherently non-specific 
and can result from non-viral causes as well. Negative-strand RT-PCR demonstrated that BeHV actively replicates 
in liver tissues of infected birds, but we were unable to determine whether the virus was localized at the site of 
hepatocellular cytoplasmic vacuolation because our attempts to use RNAscope technology65 to visualize BeHV 
in eagle livers failed due to the sub-optimal preservation conditions of field-collected specimens. Experimental 
infections of eagles or a suitable surrogate avian species will likely be necessary to determine the tropism of BeHV 
and to clarify its role in pathology and clinical disease.

We documented BeHV infection in eagles across 4,254 km of the coterminous USA, as far apart as the states 
of Florida and Washington. We also documented that eagles sampled from Wisconsin were 9.4 times more likely 
to be infected with BeHV than eagles from elsewhere, and that eagles from counties in Wisconsin where WRES 
had been diagnosed were 14.5 times more likely to be infected with BeHV than eagles from elsewhere. In a sample 
of 1188 eagles submitted to the NWHC over 23 years, WRES was diagnosed only in eagles from Wisconsin. This 
apparent concentration of WRES in Wisconsin (especially in counties bordering the lower Wisconsin River) may 
indicate locally favorable conditions for transmission or, alternatively, reporting or diagnostic bias.

Figure 3. Maximum likelihood phylogenetic tree of hepaciviruses and pegiviruses, Silhouettes indicate the host 
in which each virus was originally described (right-facing for hepaciviruses and left-facing for pegiviruses); full 
virus names and GenBank accession numbers are given in Table S3. Numbers beside nodes indicate statistical 
confidence (percent) based on 1,000 bootstrap replicates of the data (only values ≥ 50% are shown); scale bar 
indicates nucleotide substitutions per site.
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Infections can weaken wildlife, making animals more vulnerable to other causes of mortality, such as preda-
tion, trauma, and starvation66,67. BeHV could predispose eagles to such factors. If so, region-specific co-factors 
could interact with BeHV to precipitate particular disease manifestations. For example, parts of the lower 
Wisconsin River remain ice-free in Winter, providing eagles with rare fishing opportunities and creating dense 
aggregations of birds that attract tourists. Eagles could transmit infections under such circumstances14, and 
indeed WRES tends to strike in the Winter months50. The same favorable conditions could also allow eagles to 
survive more readily to the end stages of infection, perhaps explaining the good body condition characteristic 
of WRES-affected eagles50. Nevertheless, positive eagles from Wisconsin had viral loads no higher than those of 
birds from elsewhere. Unfortunately, our sample included only moribund or dead eagles submitted to state and 
federal agencies, which is not a representative sample of the population of eagles at large, such that additional 
effort will be required to ascertain whether BeHV is causally related to WRES in the wild.

Eagles showed no evidence of isolation by distance, as might be expected from their low genetic diversity likely 
resulting from bottleneck effects during their near-extinction in the 1960s59 and their ability to fly long distances. 
By contrast, BeHV showed higher genetic diversity, strong evidence of isolation by distance, and distinct sorting 
of pairwise genetic distances into discrete geographic clusters (Fig. 4). Viral genomes (especially those of RNA 
viruses such as BeHV) evolve orders of magnitude more rapidly at the nucleotide sequence level than do verte-
brate genes68. Geographic substructuring of BeHV across the coterminous United States may therefore reflect 
population structure in bald eagles that is not yet evident in bald eagle genomes, such as might result from sub-
specific or subpopulation differentiation related to migration and reproduction8. For example, viruses N, O and 
K in Fig. 4 are divergent from other viruses and also represent the only eagles analyzed from the Pacific flyway.

Eagle mitochondrial DNA and virus envelope gene sequence phylogenies were uncorrelated (Fig. 5). Because 
mitochondrial DNA is maternally inherited, this observation suggests that BeHV is not typically vertically trans-
mitted. West Nile virus, another member of the family Flaviviridae, can be transmitted to bald eagles through 
feeding on infected prey and carrion, and perhaps directly from eagle to eagle, circumventing the normal 
vector-borne mode of transmission for this virus14. Bald eagles often congregate around food sources, especially 
in winter (when WRES most commonly occurs), where they interact aggressively with conspecifics and with 
other predatory birds during competition over carrion or prey items (“piracy”)69–71, an aspect of their natural 
history that famously inspired Benjamin Franklin to impugn the species as “a bird of bad moral character”1. Such 
features of eagle social behavior could predispose them to cross-species and horizontal viral transmission. The 
reservoir of BeHV could be bald eagles, their prey/carrion, or other species with which they interact. Although no 
hepaciviruses are known to be vector-borne, this possibility should also not be discounted.

The family Flaviviridae currently contains four genera: Flavivirus, Pestivirus, Pegivirus, and Hepacivirus72. 
Members of the genus Flavivirus commonly infect birds (e.g. West Nile virus) and can cause lethal disease73. The 
genus Pestivirus contains viruses that have so far only been found in mammals54,74,75. The genus Pegivirus, also so 
far found only in mammals, contains an equine virus associated with Theiler’s disease of horses75–77 but no other 
known pathogens. HPgV is nevertheless of clinical interest because it may slow disease progression in patients 

Figure 4. Isolation by distance for bald eagles and their viruses across the coterminous United States. Points 
indicate geographic-genetic distances between pairs of bald eagles (top) and bald eagle hepaciviruses (bottom); 
see Fig. 1 and Table S1 for details. Dashed lines are least squares regression lines.
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with AIDS and Ebola virus disease through mechanisms that remain incompletely understood78,79. Members of 
the genus Hepacivirus infect diverse mammals54,75,76, and hepacivirus-like viruses have been found in reptiles, 
amphibians, fishes and domestic ducks52,54,80–82. The hepaciviruses and pegiviruses are gaining recognition as 
examples of rapidly expanding viral genera that may hold important clues about the origins and pathogenesis of 
human and animal diseases alike54,75,80,81.

Our results support the notion that the diversity and host range of the hepaciviruses will likely continue to 
expand. BeHV and DuHV form an avian lineage of hepacivirus-like viruses that also share genomic features with 
the pegiviruses, suggesting an undiscovered diversity of related avian viruses that may possess similar intriguing 
attributes. Across the genome, BeHV is more similar to the hepacivirus type virus (HCV) than to the pegivirus 
type virus (HPgV), suggesting a greater affinity of BeHV for the hepaciviruses than the pegiviruses. More broadly, 
our results show that the mammalian hepaciviruses form a sub-clade within a diverse clade of hepacivirus-like 
viruses from non-mammalian hosts, and the mammalian hepaciviruses and non-mammalian hepacivirus-like 
viruses form a clade distinct from the pegiviruses (Fig. 3). Taxonomic subdivision of the genus Hepacivirus may 
be necessary, especially if additional discoveries support the association of clades of hepacivirus-like viruses with 
particular host taxonomic groups (e.g. avian, amphibian, elasmobranch)75.

Overall, our results show that bald eagles across the coterminous United States are infected with a novel 
hepacivirus-like virus that displays intriguing genomic features, epidemiologic patterns, and evolutionary history. 

Figure 5. Geographic origins and cophylogenetic association of bald eagles and their viruses. Letters 
correspond to the locations from which eagles and their viruses were sampled, represented by stars on the map 
of the coterminous United States (top). For the tanglegram (bottom), numbers above branches indicate branch 
lengths (nucleotide substitutions per site × 10−4 for hosts and × 10−2 for viruses), and numbers beside nodes 
indicate bootstrap values based on 1000 bootstrap replicates of the data. Full information on eagles and viruses 
is given in Table S1.
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BeHV evolution and population genetics are strikingly decoupled from those of its host, perhaps reflecting a 
“lag effect” due to the recent recovery of eagles from a severe population bottleneck. The extent to which BeHV 
represents a threat to bald eagle health and conservation will require further investigation, as will determining its 
origin, reservoir(s) and mode(s) of transmission. Additional studies using expanded sample sets and associated 
clinical data from bald eagles and other birds should add to our understanding of BeHV and its relatives. Our 
findings already reveal how much remains to be discovered about health and conservation in North American 
wildlife, even in species central to the history and cultures of the continent.

Methods
ethics statement and eagle tissues. We obtained bald eagle samples from tissue archives maintained by 
the NWHC and the WDNR from carcasses submitted post-mortem. We used the records system of the NWHC 
to obtain data on numbers of eagles submitted per year, their geographic origins, causes of death, and pathologic 
findings. Tissues were submitted, archived, and analyzed in accordance with all local, state, tribal, and federal laws 
and policies, and with appropriate permits. No live animals were used in this research.

Molecular methods. We processed serum and brain tissues from nine eagles that had died of WRES for 
deep sequencing and virus discovery as described previously83,84. Briefly, we isolated viral nucleic acids using 
the QIAamp MinElute virus kit (Qiagen, Hilden, Germany), converted RNA to double-stranded cDNA using 
random hexamers, and prepared libraries for sequencing on an Illumina MiSeq intrument (V3 chemistry, 600 
cycle kit; Illumina, San Diego, CA, USA) using the Nextera XT DNA sample preparation kit (Illumina, San 
Diego, CA, USA). We analyzed sequence data using CLC Genomics Workbench version 11.0 (CLC bio, Aarhus, 
Denmark), first trimming low-quality bases (phred quality score < 30) and discarding short reads (<75 bp). We 
then analyzed unassembled reads and contiguous sequences derived from de novo assembly of raw reads for 
nucleotide-level (blastn) and protein-level (blastx) similarity to viruses in GenBank as previously described83,84.

Based on the known hepatic tropism of the hepaciviruses, we next examined archived liver tissues of 47 
birds (fresh frozen at −80 °C), including the aforementioned juvenile eagle, of which eight were from Wisconsin 
(three of these from counties bordering the lower Wisconsin River) and 39 were from elsewhere (Table S1). 
From each sample, we collected 6 mm sterile punches (60 mg), suspended them in 1 mL of 1x Trizol in tubes 
with 2.38 mm metal beads (Qiagen, Hilden, Germany), and homogenized them in three 20-second cycles with a 
Mini-Beadbeater-96 instrument (Biospec Products, Bartlesville, OK). We then centrifuged the tubes at 12,000 × g 
for 5 minutes at 4 °C and supplemented 100 µL (~6 mg tissue equivalent) of supernatant with 900 µL of Trizol. We 
performed phase separation in 2 mL Phase Lock Gel Heavy tubes (5PRIME, Gaithersburg, MD) and purified 
nucleic acids from the aqueous phase using the RNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA). 
We then conducted deep sequencing as described above.

To test eagle liver samples for BeHV, we designed a nested RT-PCR using primers annealing to the highly 
conserved NTPase region of the viral NS3 gene (Table S2). We performed RT-PCR using the OneTaq RT-PCR 
kit (New England Biolabs, Ipswich, MA) followed by the KAPA HiFi HotStart PCR kit (KAPA Biosystems, 
Wilmington, MA). We included primers at 400 nM each and conducted RT-PCR as follows: 53 °C for 30 minutes, 
94 °C for 2 minutes; 94 °C for 15 s, 56 °C for 30 s, and 68 °C for 2.5 min for 40 cycles; and a terminal extension step 
at 68 °C for 5 min. We then conducted 35 cycles of nested PCR using 1 µl of external PCR product as template and 
the same conditions described above, but omitting the initial reverse transcription step and with an annealing 
temperature of 58 °C. We visualized amplicons on 2% agarose gels stained with ethidium bromide and purified 
them using the Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA). We then prepared amplicons for 
sequencing using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA), followed by sequenced 
on an Illumina MiSeq (MiSeq Reagent Kit, v3, 150 cycles, Illumina, San Diego, CA).

To assess viral genetic variation, we amplified and sequenced the viral envelope gene in all positive tissues 
using nested RT-PCR assay (Table S1) and the same reagents described above. We included primers at 400 nM 
each and completed RT-PCR as follows: 50 °C for 30 minutes, 94 °C for 1 minute; 40 cycles of 94 °C for 15 s, 56 °C 
for 30 s, and 68 °C for 1.5 min; and a terminal extension step at 68 °C for 5 min. We conducted 35 cycles of nested 
PCR using 1 µl of external PCR product as template as described above, but omitting the initial reverse transcrip-
tion step. We then visualized, purified, and sequenced PCR products as described above.

To assess eagle genetic variation and to provide host relatedness data for cophylogenetic analyses, we assem-
bled sequences of 9 mitochondrial genes (control region, ND2, COX1, COX2, ATP6, COX3, ND4, ND5, and 
CYTB) from deep sequence data generated from liver tissues of all BeHV-positive eagles liver samples sequenced 
and analyzed as described above. We then concatenated the resulting sequences for population genetic and phy-
logenetic analyses.

To assess viral replication in liver tissues, we amplified negative-strand (replicative-intermediate) RNA fol-
lowing the methods of Lin et al.85. We used the same primers, reagents and cycling conditions for nested RT-PCR 
described above, except that we appended the primer annealing to negative-strand RNA during reverse tran-
scription (BeHV-NS3-EX-F3869) with a 5′ blocking sequence (Table S2). During flanking RT-PCR, we added 
primer WRBEV-R4084 following reverse transcription and a reverse transcriptase inactivation step. We then used 
the 5′ tag sequence (Table S2) as the forward primer and primer BeHV-R4017 as the reverse primer to preclude 
amplification of viral RNA that was either self-primed or primed by endogenous oligonucleotides during reverse 
transcription. We then verified amplicons by Sanger sequencing.

To assess relative viral loads, we conducted RT-qPCR using primers (Table S2) designed to anneal to regions 
conserved among all BeHV envelope gene sequences (determined as described above) and a ZEN double 
quenched probe (Integrated DNA Technologies, Coralville, IA). We ran reactions in triplicate on a BioRad CFX96 
real-time system mounted on a C1000 thermocycler (BioRad, Hercules CA) using the GoTaq Probe 1-Step 
RT-qPCR System (Promega, Madison, WI) according to the manufacturer’s recommendations, with 2 µl RNA 
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(extracted from 60 mg tissues, as described above) as input. We calculated viral loads as the Ct value averaged 
across three rtq-PCR replicates.

To visualize BeHV RNA in situ, we attempted to apply RNAscope technology65 to histologic sections of eagle 
livers using RNAscope double “Z” oligonucleotide probes designed to hybridize to the BeHV polymerase gene; 
however, all attempts failed, likely because of the degraded nature of RNA in tissues from carcasses collected 
under field conditions.

Viral genome analyses. We determined the putative translation initiation codon for the BeHV open read-
ing frame using the ATGpr prediction server86, we used SignalP87 to identify signal peptide sequences, and we 
used the IRESPred web server88 to characterize the BeHV IRES. We also conducted analyses of core and NS5A 
protein sequences to identify intrinsically disordered regions (IDRs) and sites within IDRs with capacity to 
undergo disorder-to-order transitions for binding interactions using ANCHOR89,90. Because of previous work 
showing that the 5′ untranslated region (UTR) of the hepaciviruses is informative for viral taxonomy and pre-
diction of function55, we analyzed homologous 3′ ends of this feature in BeHV, HCV and HPgV to predict RNA 
secondary structure using the mfold Web Server91 and the RNAfold algorithm executed on the Vienna RNA 
Websuite server92,93.

phylogenetic and evolutionary analyses. To infer the phylogenetic position of BeHV, we compiled 
nucleotide sequences of complete viral polyprotein genes available in Genbank representing known lineages 
within the hepaciviruses and pegiviruses. We then generated codon-based sequence alignments using the PRANK 
algorighm94 with the Gblocks algorithm95,96 applied to remove poorly aligned regions using TranslatorX97. We 
inferred phylogenies from the resulting 3,579-position nucleotide sequence alignment using PhyML98, with 
the model of molecular evolution (GTR + Γ + I) estimated from the data99 and 1,000 bootstrap replicates to 
assess statistical confidence in clades, and we displayed trees using FigTree100. To compare BeHV and select 
hepacivirus-like viruses, hepaciviruses, and pegiviruses, we aligned full viral genomes as described above and 
examined variation in amino acid-level similarity across the length of the alignment using the sliding-window 
method implemented in SimPlot101.

To assess host and viral genetic diversity, we calculated nucleotide diversity (π102) from aligned eagle and virus 
gene sequences using the computer program MEGA7103. To assess isolation by distance, we computed pairwise 
geographic distances between centroids of the US county of origin from which each eagle was collected using 
Geographic Distance Matrix Generator104. We then computed uncorrected pairwise genetic distances between 
eagles (mitochondrial gene sequences) and viruses (envelope gene sequences) and compared each to pairwise 
geographic distances using Mantel tests of matrix correlation105 with 10,000 permutations of the data to assess 
statistical significance, implemented in the APE package in R106.

To assess host-virus coevolution, we conducted cophylogenetic analyses. We generated codon-based sequence 
alignments of eagle concatenated mitochondrial DNA sequences and virus envelope gene sequences and inferred 
maximum likelihood phylogenies as described above. We then constructed tanglegrams using Dendroscope107 
and tested for overall phylogenetic congruence and the significance of individual host/virus associations using the 
AxParafit algorighm58,108 implemented in CopyCat, version 2.04109.

Data availability
All data generated during the current study are available in GenBank (accession numbers MN062427- 
MN062576) or are included in this published article and its Supplementary Information files.
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Supplementary Figure S1: Predicted RNA secondary structures of homologous 
regions of 5' untranslated regions of hepatitis C virus, genotype 1 (HCV; GenBank 
accession number NC_004102), bald eagle hepacivirus (BeHV; GenBank accession 
number MN062427), and the human pegivirus GB virus C (HPgV; GenBank acces-
sion number NC_001710).  Structures are minimum free energy predictions (-110.12, 
-87.67, and -118.62 kcal/mol, respectively) generated by the RNAfold algorithm on 
the Vienna RNA Websuite server92,93; colored scales indicate base-pair probabilities.
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Supplementary Figure S2: Relative loads of bald eagle hepacivirus 
(BeHV) in bald eagle liver tissues.  Ct values are averages across triplicate 
quantitative real-time reverse transcription PCR assays.  Lower Ct values 
indicate higher relative viral loads, lines indicate means, and error bars 
indicate standard errors of the mean.  Values are shown for six eagles from 
Wisconsin compared to nine eagles from elsewhere (see Table S1); the 
difference is not statistically significant (t=1.376; df=13; P=0.1920).



Table S1: Liver samples used for characterization of bald eagles and viruses

Accession Age Sex Date State County Cause of death BEHV ID in Figure 3
2006-39 Immature Female 4/27/06 WI* Columbia Electrocution POS A
26941 Immature Male 1/21/16 WI La Crosse Enteritis POS B
27149 Adult Female 3/30/16 NE Webster Lead poisoning POS C
17498 Adult Female 1/6/02 WI Grant Lead poisoining or WRES POS D
26985 Adult Female 2/3/16 KS Cloud Trauma: impact POS E
26886 Adult Male 12/8/15 MN Houston Lead poisoning POS F
18490 Immature Male 12/29/02 WI* Sauk WRES POS G
27147 Adult Female 3/30/16 NE Buffalo Trauma POS H
26998 Immature Male 2/10/16 FL De Soto Trauma: impact POS I
17477 Adult Female 12/18/01 ND Sargent Enteritis POS J
19373 Immature Female 3/9/05 WA Whatcom Trauma POS K
26529 Adult Male 5/29/15 WI Adams Trauma POS L
26778 Adult Female 9/15/15 WI Clark Undetermined POS M
26976 Adult Female 1/29/16 WA Grays Harbor Emaciation POS N
26856 Adult Female 11/6/15 WA Grays Harbor Drowning POS O
18619 Immature Female 4/22/03 AZ Coconino Lead poisoning neg n/a
19045 Adult Male 4/27/04 MD Dorchester Trauma neg n/a
19227 Adult Male 9/16/04 VA Stafford Gangrene neg n/a
19396 Immature Unknown 4/15/05 MD Hartford Trauma neg n/a
19762 Immature Unknown 5/19/06 AZ Pinal Trauma neg n/a
20129 Immature Female 1/30/07 AR Poinsett Trauma neg n/a
20165 Adult Male 12/30/06 NC Beaufort Electrocution neg n/a
20341 Adult Male 7/12/07 OR Crook Trauma neg n/a
23016 Immature Male 4/21/10 IL Calhoun Aspergillosis neg n/a
24668 Adult Male 1/30/14 WI Oneida Emaciation neg n/a
26001 Immature Female 10/7/14 AK Kodiak Island Avian pox neg n/a
26093 Immature Male 12/18/14 NJ Hunterdon Trauma neg n/a
26758 Immature Male 9/3/15 AK Valdez-Cordova Avian pox neg n/a
26853 Adult Male 11/4/15 VA Prince William Trauma: gunshot neg n/a
26918 Adult Male 1/4/16 WI Lafayette Trauma: gunshot neg n/a
26978 Adult Male 1/29/16 WA Klickitat Choking neg n/a
26993 Adult Male 2/5/16 GA Harris Trauma: impact neg n/a
26999 Adult Female 2/10/16 NC Richmond Trauma: impact neg n/a
27005 Adult Female 2/12/16 SC Kershaw Trauma neg n/a
27038 Adult Female 2/24/16 FL Seminole Trauma: impact neg n/a
27039 Adult Male 2/24/16 FL Orange Trauma neg n/a
27040 Adult Female 2/24/16 FL Seminole Trauma: gunshot neg n/a
27056 Adult Male 3/1/16 AZ Navajo Lead poisoning neg n/a
20165 Adult Male 12/30/06 NC Beaufort Electrocution neg n/a
26093 Immature Male 12/18/14 NJ Hunterdon Trauma neg n/a
26689 Adult Female 8/6/15 NE Clay Undetermined neg n/a
26744 Adult Male 8/28/15 MD Kent Starvation neg n/a
26940 Adult Female 1/20/16 WA Spokane Emaciation neg n/a
26977 Immature Female 1/29/16 WA Grays Harbor Undetermined neg n/a
26982 Adult Male 2/2/16 MT Lincoln Lead poisoning neg n/a
26986 Adult Male 2/3/16 GA Bryan Trauma: impact neg n/a
27148 Adult Female 3/30/16 NE Nuckolls Electrocution neg n/a

* Counties bordering the lower Wisconsin River



Table S2.  Oligonucleotide primers and probes used in the study 

 

Name* Sequence (5'-3') Amplicon size (bp) 

   

Primers for diagnostic nested PCR of the BeHV NS3 gene 

BEHV-NS3-EX-F3869† GATGTAGTGCTTTGTGATGAGTGTCA 
262 

BEHV-NS3-EX-R4084 CCTTTGAACCACAAAAGATGACGTG 

BEHV-NS3-IN-F3918 GCATTGGTACTGTGCTCACG 
138 

BEHV-NS3-IN-R4017 CCACTTCTCCCTCGTCAGTC 

   

Primers for nested PCR and seqeuncing of the BeHV envelope gene ‡ 

BEHV-ENV-EX-F491 TCCCTTCTTGTGTGGCTGAT 

1550-1676 
BEHV-ENV-EX-F525 TCTCGTCAATGGAACTTGGA 

BEHV-ENV-EX-R2074 GAGCATAAACCCAAGCAAGC 

BEHV-ENV-EX-R2166 AAGGGCTAAAGCAGGGTAGC 

   

BEHV-ENV-IN-F582 GCTGTCACACATGGAAGTGC 

1348-1493 
BEHV-ENV-IN-F644 CGGTTCCTTGGTTCATGACT 

BEHV-ENV-IN-R1991 GCTGTCACACATGGAAGTGC 

BEHV-ENV-IN-R2074 GAGCATAAACCCAAGCAAGC 

   

Primers and probe for real time quantitative PCR of the BeHV envelope gene 

BEHV-QRT-F299 TTTTCCAAGCTCTCGCCGATAG 
146 

BEHV-QRT-R444 CCTACCAGCAGCTAGATAGAGTATGA 

BEHV-QRT-PRB /56-FAM/CACTGTTCC/ZEN/AATAGGCTTGTTTAGGTTGATTG/3IABkFQ/ 

   

 

*Numbers included in primer names indicate the nucleotide position to which the 5' base of each primer anneals 

within the BeHV polyprotein open reading frame. 

†This primer was appended with tag sequence 5'-AAGCAGTGGTATCAACGCAGAGT-3' during negative strand 

PCR to assess of viral replication; see text for details. 

‡Various combinations of external and internal primers were used to obtain envelope gene sequences from all 

BeHV-positive tissues. 
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