
royalsocietypublishing.org/journal/rstb

Research
Cite this article: Phillips SR et al. 2020 Faecal
parasites increase with age but
not reproductive effort in wild female
chimpanzees. Phil. Trans. R. Soc. B 375:
20190614.
http://dx.doi.org/10.1098/rstb.2019.0614

Accepted: 29 June 2020

One contribution of 16 to a theme issue
‘Evolution of the primate ageing process’.

Subject Areas:
ecology, evolution, health and disease and
epidemiology, physiology

Keywords:
life history, trade-offs, reproduction, immunity,
ageing, infection

Author for correspondence:
Sarah Renee Phillips
e-mail: sjoyce@unm.edu

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
c.5117047.

Faecal parasites increase with age but
not reproductive effort in wild female
chimpanzees
Sarah Renee Phillips1, T. L. Goldberg2, M. N. Muller1, Z. P. Machanda3,
E. Otali4, S. Friant5, J. Carag2, K. E. Langergraber6,7, J. C. Mitani8,
E. E. Wroblewski9, R. W. Wrangham10 and M. Emery Thompson1

1Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
2Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
3Department of Anthropology, Tufts University, Medford, MA, USA
4Kibale Chimpanzee Project, Fort Portal, Uganda
5Department of Anthropology, Pennsylvania State University, State College, PA, USA
6School of Human Evolution and Social Change, and 7Institute of Human Origins,
Arizona State University, Tempe, AZ, USA
8Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
9Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
10Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA

SRP, 0000-0001-6857-5888; TLG, 0000-0003-3962-4913; ZPM, 0000-0001-7060-7949;
SF, 0000-0003-1664-5180; JC, 0000-0003-2634-9457; JCM, 0000-0001-7042-5854;
EEW, 0000-0003-3032-6514; MET, 0000-0003-2451-6397

Energy investment in reproduction is predicted to trade off against other
necessary physiological functions like immunity, but it is unclear to what
extent this impacts fitness in long-lived species. Amongmammals, female pri-
mates, and especially apes, exhibit extensive periods of investment in each
offspring. During this time, energy diverted to gestation and lactation is
hypothesized to incur short and long-term deficits in maternal immunity
and lead to accelerated ageing. We examined the relationship between
reproduction and immunity, as measured by faecal parasite counts, in wild
female chimpanzees (Pan troglodytes schweinfurthii) of Kibale National Park,
Uganda. While we observed higher parasite shedding (counts of eggs, cysts
and larvae) in pregnant chimpanzees relative to cycling females, parasites
rapidly decreased during early lactation, the most energetically taxing phase
of the reproductive cycle. Additionally, while our results indicate that parasite
shedding increases with age, females with higher fertility for their age had
lower faecal parasite counts. Such findings support the hypothesis that the
relatively conservative rate of female reproduction in chimpanzees may be
protective against the negative effects of reproductive effort on health.

This article is part of the theme issue ‘Evolution of the primate ageing
process’.

1. Introduction
Life-history theory predicts that energetic investments in reproduction come at
the expense of survival-enhancing functions, such as cellular repair and immu-
nity [1,2]. Ideal conditions, like high resource availability and low extrinsic
mortality, may allow for a more balanced allocation of resources across the life-
span, but these conditions are not typical of wild species. Selection should then
favour early life investment in reproduction over survival to old age, causing
cumulative deficits in energy allocated to immune function that lead to degenera-
tive ageing (‘the disposable soma theory’: [3]). Individuals unable to recover
deficits in nutrition and energy allocated to immunity during single reproductive
bouts may incur cumulative effects on morbidity with increased fertility [4]. This
accumulated burden of reproduction may be particularly challenging for female
apes who invest heavily in singleton offspring requiring years of care, and whose
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reproductive success is dependent on survival to old age [5].
Alternatively, the selection of females may compensate for
slow reproductive rates by increasing investments in immune
defence that promote survival and future reproduction [6–8].
Despite the straightforward predictions, the extent to which
cumulative reproductive effort impacts variation in health
and ageing within and among wild ape species is unknown.

Immunosenescence, an integral component of the ageing
process, features prominently in the life history of long-lived
species, with potential to impact both survival and fertility
[9,10]. The ageing immune system has been defined by
declines in adaptive immunity, through exhaustion of naïve
CD4 T cells with antigenic exposure, and increases in sys-
temic inflammation [11–13]. Assessing ageing and
immunity in wild species remains a difficult task, particularly
for primates where non-invasive sampling is a necessity.
Nevertheless, a handful of studies of wild vertebrate popu-
lations have described declines in markers of adaptive
immunity and/or increases in inflammation with age, includ-
ing in Soay sheep (Ovis aries) [14], roe deer (Capreolus
capreolus) [15] and collared flycatchers (Ficedula albicollis)
[16]. In species where collecting invasive samples is not poss-
ible, measures of ecto- and endoparasite burdens have been
used as indirect proxies for pathogen resistance, which in
part involves immune function. Parasitic infection is a nutri-
tional and energetic stressor on hosts, eliciting costly defence
mechanisms related to both resistance and tolerance of infec-
tion [10,17,18]. For example, high-pathogen burden and
elevated leucocytes are associated with an increase in resting
metabolic rate, a measure related to the energetic cost of
homeostasis, of 10–15% in a natural subsistence human popu-
lation [19].While not a directmeasure of host immunity, higher
parasite burden reflects a reduced ability to control, eliminate
and/or tolerate parasite infection.

A few studies have demonstrated proximate trade-offs
between female reproductive effort and health-related out-
comes. For example, relative to the non-pregnant/non-
lactating condition, pregnancy and/or lactation is associated
with higher mortality in rhesus macaques [20], slower wound
healing in baboons [21] and higher parasite burden in several
mammals [22–27]. Across vertebrates, a number of studies
also broadly support a trade-off between high fertility and
reduced longevity [28,29]. Among female primates, including
humans, results are inconsistent; some suggest that high ferti-
lity may be associated with negative health outcomes only in
resource poor environments (reviewed in [27,30,31–34]). All
primates share unusually high parental investment and long
lifespans [5]. A slow pace of reproduction necessitates a pro-
longed reproductive life, but allows females to reduce their
daily costs of pregnancy and lactation. High reproductive
investment and longevity are further exaggerated in human
females, who exhibit an accelerated pace of reproduction,
often care for multiple dependent offspring, and whose life-
span extends well past reproductive senescence. The human
reproductive pattern may be dependent on the availability of
cooperative provisioning of offspring and mothers [35–37],
which is absent in our livinggreat ape relatives.Currently, how-
ever,we lack comparative data evaluating costs of reproduction
on health in wild ape species. Such data offer the potential for
resolving the relative contributions of physiology, ecology
and behaviour to derived features of human life history.

Here, we examine whether reproductive status or cumu-
lative reproductive effort in female eastern chimpanzees

(Pan troglodytes schweinfurthii) results in demonstrable effects
on immunity, as measured by shedding of parasite eggs, cysts
and larvae. We predict that female chimpanzees in high effort
phases of the reproductive cycle (pregnancy and early lacta-
tion) will exhibit higher prevalence, intensity and richness
of parasites compared with females in low effort phases
(cycling and late lactational amenorrhoea) (prediction 1).
We additionally predict that female chimpanzees with
higher lifetime reproductive effort have higher parasite
counts for their age (prediction 2). We sampled female chim-
panzees multiple times over different reproductive states to
increase our ability to isolate the effects of reproduction
from individual variation. We focused our efforts on two
chimpanzee communities, Kanyawara and Ngogo, from the
same population within Kibale National Park, Uganda.
Kanyawara and Ngogo chimpanzees, while close in proxi-
mity, have previously been shown to experience differences
in habitat quality and food availability, which may be related
to observed differences in community size, density and
activity patterns at these two sites [38]. Thus, we additionally
tested the prediction that chimpanzees in the area of higher
energy availability would have lower overall parasitism and
experience reduced costs of reproduction (prediction 3).

2. Methods
(a) Field sites
Wild female chimpanzees were studied in Kibale National Park,
Uganda, between July 2015 and December 2017. Kibale is located
in southwestern Uganda and comprises 795 km2 of tropical
and sub-tropical rainforest [39]. The Kanyawara community of
chimpanzees within Kibale was habituated for long-term study
in 1987 and numbered 49–55 chimpanzees during the study
period. Our sample included four subadult (aged 10–13) females,
one ofwhom experienced a pregnancy, and 17 adult (aged 14 to 56)
females from the Kanyawara community. The Ngogo community,
habituated for study in 1995, averages 190–200 chimpanzees and
provided samples from 60 adult females (aged 14 to 68) during
this study.

Although Kanyawara and Ngogo are separated by only
approximately 10 km and dispersal between them is common
[40], the Ngogo chimpanzees have access to significantly higher
densities of food resources [38], have a higher energy balance
than Kanyawara chimpanzees [41], and have reported the highest
survival rates of any known wild chimpanzee community [42].
However, estimated weaning ages are similar [43,44]. Thus, the
comparison between Kanyawara andNgogo allows us to examine
whether resource access moderates the effects of reproductive
effort on parasite shedding.

(b) Reproductive status and cumulative reproductive
effort

Reproductive status was categorized into four levels: cycling,
pregnant, early lactation and late lactation. Pregnancy was deter-
mined by back-calculating 228 days from the birth date of the
most recently born offspring [45]. Although chimpanzee infants
are often not fully weaned until four to six years of age
[43,44,46], nursing intensity and maternal energy costs decline
precipitously by about two years postpartum [47,48]. Thus, we
defined early lactation as the first two years postpartum with a
living infant. Females with infants older than two years, or
whose infants had died, were categorized as either cycling or
in late lactation, depending on whether they had exhibited

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190614
2



maximally tumescent sexual swellings postpartum or remained
in lactational amenorrhoea, respectively. The cycling category
also included nulliparous females after they exhibited their first
maximally tumescent sexual swellings.

The long-term reproductive effort is ordinarily quantified by
examining parity. For our question, this measure was not ideal
because some females experienced many early infant deaths, thus
their parity was high but they had invested very little in lactation.
To better address long-term reproductive effort, we calculated a
measure of cumulative reproductive effort which captured the
amount of time that females had spent in pregnancy and the more
costly phase of early lactation. This included the sum of all
months in which a female was pregnant or had a living infant
under 2 years of age. In some cases (n = 20 of 81 females), females
were already mothers at first identification at the onset of the
long-term study, thus, it was necessary to estimate their early ferti-
lity. We used the known relationship between cumulative
pregnancy and lactation months and age for those females of
knownparity (n = 61 females) to estimate themissingyearsof repro-
ductive effort (electronic supplementary material, figure S1). The
positive linear relationship between cumulative pregnancy and lac-
tation months and age represented a yearly gain of 1.79 pregnancy
and 4.76 lactationmonths, respectively, for the average female aged
10 to 38 years. These slopesweremultiplied by the number of years
the female was not observed and added to known pregnancy and
lactation months for the female in question. We defined the total
number of pregnancy and lactation months, observed and esti-
mated, as cumulative reproductive effort (CRE). Among the 20
females for which an estimation of CRE was required, three of the
oldest females from Ngogo had only one observed birth between
them and would have required calculation for the majority, if not
all, of their reproductive effort. For this reason, they were removed
fromanalyses. Of the remaining 17 females that required estimation
of a component of their CRE, a mean of approximately 7.75 years
(range 2–18 years) required estimation, and their average age
during the study was 43 years (range: 25–56 years).

(c) Faecal sample collection and parasite microscopy
Faecal samples were preserved in the field in 10% formalin,
transported to the University of Wisconsin-Madison, Madison,
WI, USA, and stored at room temperature until processing.
One gram of preserved faecal material was first removed from
each sample and resuspended in 10% formalin. Gastrointestinal
parasite eggs, cysts and larvae were sedimented using a protocol
adapted from Ash & Orihel [49]. Briefly, one gram of faeces was
drained of excess formalin and the sediment was washed
through two sheets of grade 10 cheesecloth with 0.08% sodium
chloride solution into a reservoir. The slurry was resuspended
in 0.08% sodium chloride in a 15 ml tube filled to capacity and
spun on a centrifuge at 500 rcf for one minute to form a pellet
of eggs, cysts and larvae. The sodium chloride was then dec-
anted, and the process repeated twice. After three washes with
sodium chloride, the pellet was suspended in 10 ml of 10% for-
malin and 3 ml of ethyl-acetate, shaken vigorously for 30 s and
then centrifuged at 500 rcf for 2 min. The resulting pellet was
viewed under 10× magnification using compound light micro-
scopes for the identification of helminth eggs and larvae. All
measurements and photographs were taken under 40× objective,
and final measurements were recorded in millimeters. One-half
slide from each sample was processed at 40× objective for the
identification of protozoan cysts and their enumeration by
species as many (greater than three views where more than
two parasites were visible in the field of view), moderate (at
least three views where more than two parasites were present
in the field of view), few (at least three views where more than
one parasite was present in the field of view), rare (one to five
parasites seen on entire slide) or absent (no parasite observed).

(d) Dataset construction and analyses
Four response variables from parasitological analyses were calcu-
lated. First, we quantified parasite richness as the number of
different parasite eggs, cysts and larval morphotypes identified
in each faecal sample (including both helminths and protozoans).
Next, we examined prevalence (i.e. presence/absence) and inten-
sity (i.e. total egg count) of nodule worms from the genus
Oesophagostomum. Nematodes of this genus are known pathogens
of humans and non-human primates and can cause weakness,
diarrhoea, abdominal pain, weight loss and internal lesions to
the body cavity and organs in chimpanzees [50]. They are also
known to occur at high prevalence in Kibale chimpanzees [51–
57]. Similarly, we assessed the prevalence of Iodamoeba sp. infec-
tion, as measured by the presence or absence of cysts. Iodamoeba
are protozoans that are generally considered non-pathogenic sym-
bionts [58]. Oesophagostomum and Iodamoeba were the most
prevalent helminths and protozoans, respectively, observed in
our study (see Results), making them amenable to quantitative
analysis to examine the influence of reproduction on relatively
pathogenic versus non-pathogenic parasites.

The final dataset for analysis included 78 female chimpan-
zees (n = 412 observations) aged 10 to 56 years old, including
21 females (n = 150 faecal samples) from Kanyawara and 57
females (n = 262 faecal samples) from Ngogo (electronic sup-
plementary material, figure S2). Six females in the 10- to
15-year-old age class were new immigrants to the communities,
which can be stressful for young females [59]. However, the
new immigrants did not differ in measures of parasitism from
the broader sample based on preliminary analyses, so we did
not include immigration status as a fixed effect in our models.
A table of descriptive statistics for fixed effects and response vari-
ables is provided in the electronic supplementary material, table
S3. All analyses were conducted in R [60] with the faecal sample
as the unit of analysis, and chimpanzee identity and year and
month of sample collection included in all models as random
effects. As measures of parasite eggs, cysts and larvae are often
overdispersed among hosts, and count data often include
many zeros (i.e. no infection observed), several distributions
were considered. The following distributions were selected as
they represented the best fit to each type of response based on
plots of distributions and residuals: Poisson for parasite richness,
binomial for both prevalence models and negative binomial for
Oesophagostomum intensity. To examine associations between
reproduction and parasite shedding, we examined our four para-
site response variables in generalized linear or logistic mixed
models using the lme4 [61] and glmmTMB [62] packages. All
models included reproductive status (prediction 1), CRE (predic-
tion 2), community, age in years (continuous) and season (i.e. wet
and dry). Because CRE and age were intrinsically related and led
to multicollinearity in our models, they could not be used in the
same model in their raw forms. After conducting exploratory
analyses which revealed that models with age alone, as assessed
by a likelihood-ratio test, produced better fits than those with
CRE alone, we transformed the CRE measure by calculating
the residuals of a simple linear regression of CRE on age [63].
Using the residual CRE in the analysis allowed us to assess the
influence of CRE on parasite shedding, independent from the
influence of age. Residual CRE and age were both mean-centred
for modelling. We also considered interaction terms between the
community and reproductive status and between community
and CRE in all models, addressing the prediction that habitat
quality might moderate trade-offs between reproduction and
parasite shedding (prediction 3). All two-way interactions were
explored and eliminated from the model if they were non-signifi-
cant. Significance of fixed effects from regression models was
determined by Wald Chi-square tests. If a fixed effect was a
factor with more than two levels, a Tukey test was employed
to determine significant differences between pairs of means.
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3. Results
Six genera of gastrointestinal helminthswere identified, includ-
ing two taxa of Oesophagostomum (nodule worm) eggs,
two taxa of Strongyloides eggs, Trichostrongylus, Trichuris
(whipworm), Enterobius (pinworm) and Mammomonogamus.
Hookworm was also diagnosed, but the genus of the hook-
worm present (i.e. Ancylostoma or Necator) could not be
determined via microscopy such that both genera were com-
bined for analyses. An additional six strongylid nematode
larval morphotypes were included in analyses, but were not
identified to genus. Six genera of protozoan parasites were
also identified, including Iodamoeba, Giardia, three species of
Entamoeba, Blastocystis, Chilomastix and Endolimax (for preva-
lence, table 1). Of the 13 genera identified, five genera
are known to contain species pathogenic to chimpanzees,
including Oesophagostomum, Strongyloides, Mammomonogamus,
Entamoeba, and Giardia [56,64–69]. Additionally, hookworm,
whether Necator or Ancylostoma, would also be considered a
pathogenic infection [65]. It is worth noting, however, that
even infections that are normally asymptomatic could cause
morbidity, or mortality, when the host is in poor health [55].

(a) Effects of reproductive status
Contrary to our prediction, parasite richness and Iodamoeba
prevalence were not significantly higher in female chimpan-
zees in the first two years of lactation versus those in the
cycling condition (table 2; figures 1 and 2, and the electronic
supplementary material, figure S4). While Oesophagostomum
prevalence and intensity were significantly higher in early lac-
tation than the cycling condition in the regressionmodels, early
lactation did not remain significantly different from females
in cycling status in post hoc, pairwise comparisons (for

prevalence: βELACT – CYCL = 0.677 ± 0.324, p = 0.156; for inten-
sity: βELACT – CYCL = 0.389 ± 0.189, p = 0.168). Owing to the
importance of this parasite on chimpanzee health (i.e. high
prevalence, high variation in intensity among females and
pathogenicity) at Kanyawara andNgogo, we further examined
howOesophagostomum egg counts varied continuouslyover the
full course of the reproductive cycle (figure 3). Egg counts
increased dramatically from the beginning to end of pregnancy,
peaking approximately 3–4 months postpartum before declin-
ing. Thus, while Oesophagostomum egg counts are not elevated
on average during pregnancy and early lactation as we defined
them, they do appear to be elevated during the last months of
gestation and the first months of lactation.

Relative to cycling, pregnancy did yield higher parasite
richness (βPREG – CYCL = 0.254 ± 0.088, p = 0.004). Pregnancy
was also associated with higher Iodamoeba prevalence, the
non-pathogenic parasite, at Kanyawara (βPREG – CYCL =
3.052 ± 1.097, p = 0.028), but not at Ngogo (βPREG – CYCL =
0.647 ± 0.392, p = 0.351).

(b) Effects of age and cumulative reproductive effort
Age was a strong positive predictor of parasite richness (χ21 =
5.504, p = 0.019) and Oesophagostomum prevalence (χ21 = 9.769,
p = 0.002) and intensity (χ21 = 17.060, p < 0.001), but not Ioda-
moeba prevalence (χ21 = 1.679, p = 0.195). Age did not interact
with reproductive status, cumulative reproductive effort, or
with any other fixed effects in our models (table 2; figure 1
and the electronic supplementary material, figure S4).

Cumulative reproductive effort (corrected for age) was a
significant predictor of parasite shedding in all models, but
not in the direction predicted. Female chimpanzees with
higher CRE than predicted by their age experienced lower
parasite richness (χ21 = 6.447, p = 0.011; βCRE =−0.085 ± 0.034,
p = 0.011), Oesophagostomum prevalence (χ21 = 11.192, p <
0.001; βCRE =−0.574 ± 0.172, p < 0.001) and intensity (χ21 =
8.280, p = 0.004; βCRE =−0.332 ± 0.115, p = 0.004), and Ioda-
moeba prevalence (χ21 = 6.356, p = 0.012; βCRE =−0.329 ± 0.131,
p = 0.012).

(c) Effects of community
Chimpanzee community was a significant predictor of para-
site shedding in every model, with a lower number of
parasite eggs, cysts and larvae observed at Ngogo in all
cases (table 2; figures 1 and 2, and the electronic supplemen-
tary material, figure S4). We also observed an interaction
between the community and reproductive status for Ioda-
moeba prevalence (βPREG:Ngogo =−2.405 ± 1.168, p = 0.039),
but not for any other measures of parasite burden. Specifi-
cally, Iodamoeba prevalence was significantly different
between female chimpanzees at Kanyawara and Ngogo in
both pregnancy (βKanyawara – Ngogo = 2.794 ± 1.118, p = 0.013)
and early lactation (βKanyawara – Ngogo = 0.802 ± 0.373, p =
0.032). The effects of CRE did not differ between
communities.

4. Discussion
In this study, we assayed faecal parasite counts to test the
hypothesis that reproduction imposes energetic trade-offs
that may accelerate the ageing process in female chimpanzees.
We found a robust increase in parasite shedding with age.

Table 1. Number of faecal samples positive, and per cent positive, for each
parasite genus found in female chimpanzees (n = 81 females and 432
faecal samples) of Kibale National Park, Uganda, between July 2015 and
December 2017. (Samples include females aged 10 to 68 years old. An
asterisk denotes taxonomic groups known to contain at least one species
pathogenic in chimpanzees [56,64–69].)

genus positive % positive

helminths

Oesophagostomum* 315 77

hookworm* 84 20.5

Trichostrongylus 74 18.1

Strongyloides* 41 10

Trichuris 2 0.5

Enterobius 1 0.2

Mammomonogamus* 1 0.2

protozoans

Iodamoeba 199 48.7

Entamoeba* 116 28.4

Blastocystis 34 8.3

Giardia* 33 8.1

Chilomastix 3 0.7

Endolimax 1 0.2
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However, we did not find substantial evidence to support our
predictions that the energetic costs of reproduction compro-
mise females’ ability to resist gastrointestinal parasites. While
pregnancy was associated with increased parasitism, early lac-
tation generally was not. One highly prevalent, pathogenic
taxa remained elevated during the first fewmonths of lactation,
but notably began declining at a time when maternal energetic
costs should have been the most intense, meaning that egg
counts returned to levels statistically indistinguishable from

those of cycling females several years before the typical age
of weaning. Higher reproductive effort across the life course
was also associated with lower, rather than higher, parasite
shedding. Although there is every reason to believe that the
energy devoted to reproduction imposes constraints on the
immune system, our data suggest that this trade-off is not
sufficient to impact parasite shedding in female chimpanzees.

Our study does provide evidence to suggest that energy
availability can influence parasite shedding. We found
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significantly fewer parasites inNgogo, the community of chim-
panzees that enjoys relatively high resource availability, than in
Kanyawara. This may suggest that under increased energy
limitations, the collateral costs of reproduction might be more
obvious. Such conditions were not met in our study, as even
Kanyawara did not experience the predicted increase in para-
sites with early lactation or residual CRE. Notably, mortality
rates of both communities are much lower than have been
reported from other study populations, suggesting that our
study population as whole experiences relatively healthy con-
ditions [42,70]. While beyond the scope of the current analysis,
in the future,we aim to investigate the role of individual energy
balance and physiological stress on faecal parasite loads.

Lactation is the most energy-intense phase of the female
mammalian reproductive cycle [71,72]. This is owing not
only to the increased mass of the infant that must be fed and
carried but to the collateral costs of energy conversion
needed to produce breastmilk [73]. If the direct cost of repro-
duction is the key constraint on the immune system, then we
would have expected the strongest evidence of elevated para-
site counts during the first 2 years of lactation, when nursing
intensity is highest and the infant’s brain is growing
[47,48,74]. In our examination of Oesophagostomum counts
across the reproductive cycle, egg counts that had increased
throughout pregnancy remained high for the first few
months postpartum, suggesting that there may be some tem-
porary costs to immune function associated with the period
of exclusive nursing. However, faecal parasite counts began
to decline precipitously even before six months, the approxi-
mate age when infant chimpanzees first sample solid foods
[43,44]. Given that infants are growing and their needs increas-
ing, mother’s costs should remain high or even increase for
many months past this point. However, prior evidence from
Kanyawara indicates that mothers are able to slowly increase
their energy balance at this time [48]. Taken together, these
data suggest that energetic constraints on maternal health,
when they occur, are likely to be transient relative to the typical

4–6 year period that chimpanzee mothers nurse their infants
[43,44,46]. These findings conform with recent evidence from
Kanyawara that lactation does not significantly increase rates
of respiratory illness [75] or concentrations of urinary cortisol
[76]. It is possible that female chimpanzees in early lactation
are mitigating costs by reducing activity and risk associated
with feeding competition during this time. For example, lactat-
ing females at Kanyawara, the community with lower food
availability, spend more time resting and less time feeding
than lactating females at Ngogo, though cycling females in
the two communities do not differ [38]. Offsetting energetic
stress through changes in behaviour is one strategy that
could reduce impact on the immune system.

We observed an increase in Iodamoeba prevalence and
parasite richness associated with pregnancy. Furthermore,
post hoc examinations of Oesophagostomum intensity support
an increase in faecal egg count throughout pregnancy. Preg-
nancy has previously been associated with higher parasitism
in a natural fertility human population [32,77] and a few
non-human primate species (reviewed in [27]). The higher
parasite burden observed during pregnancy in our study
could be the result of energy deficits to immunity created by
the growing fetus. However, this explanation is insufficient,
as parasite shedding did not continue to increase during
early lactation. Instead, it is more likely that gestating females
are at increased susceptibility to parasites owing to repattern-
ing of the maternal immune system that helps prevent
rejection of fetal tissues [78,79]. This idea is further supported
whenwe acknowledge that, while Iodamoeba andOesophagosto-
mum both increase during pregnancy, a pathogenic helminth
like Oesophagostomum may take the immune system longer to
control or eliminate owing to the parasite’s size andmaturation
time. This may explain the short period of a continued increase
in Oesophagostomum egg count postpartum.

Our results are congruent with other studies supporting
senescence as a ubiquitous feature of mammalian biology,
even among wild animals subject to high-pathogen environ-
ments and extrinsic mortality [15,80,81]. While we did not
measure immune function directly, other studies have
demonstrated that age changes in gastrointestinal parasites cor-
respond with changes in immunological parameters [15]. Age-
related changes in parasite burden have been inconsistent in
studies across primate taxa [82], possibly owing to the often
small and cross-sectional sample designs. Alternatively,
mortality selection may be obscuring the ability to detect
age-related changes in parasitism if only themost fit individuals
survive to old age [83]. However, Hämäläinen et al. [82] propose
intriguing functional explanations that might be addressed
with further accumulation of comparative data, including
differences in pathogenicity of parasites, changes in behaviour
patterns of old individuals that mitigate the risk of infection,
and acquired immunity over the life course mitigating
late-life infections.

It is important to note that the age increase we observed in
female chimpanzees may itself reflect the cumulative costs of
reproduction, as follows from theory. What we could not
observe was variation among same-aged individuals that
could be attributed to different reproductive histories. The
absence of evidence of higher parasite shedding during early
lactation in individual reproductive bouts, the decline in Oeso-
phagostomum egg counts observed in early months postpartum
and the lower parasite shedding observed in female chimpan-
zees with higher fertility all suggest that chimpanzee females
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are usually able to negotiate costs of reproduction without
demonstrable impacts on health-related outcomes. This pattern
contrasts with that for wild baboons, where female condition
declines throughout lactation [84] and lactating females
show a reduced ability to heal wounds [21]. Our results prob-
ably indicate phenotypic correlations, such that better quality
individuals or those with more resources can afford to repro-
duce at a faster rate while maintaining a healthy soma [85].
Female chimpanzees show great variability in reproductive
rates, and metabolic profiles indicate that this timing is
linked not to infant development ormilk intake, but to the abil-
ity of mothers to maintain a positive energy balance before
conceiving another infant [48,86]. In other words, the pace of
reproduction is tailored to the ability of females to afford its
costs, a strategy that is shared with humans [30,87]. Such find-
ings support the hypothesis that the relatively conservative rate
of female reproduction in chimpanzees may be protective
against the negative effects of reproductive effort on health.

Chimpanzee community was a significant predictor of
parasite shedding in this study, with Kanyawara females exhi-
biting higher parasitism across all measures. This difference is
unlikely owing to differences in genetics or demographics.
High levels of gene flow have been demonstrated between
the two communities [40], and the larger community size and
density of chimpanzees at Ngogo should predict higher para-
site burden [88]. Dietary quality is an important determinant
of immune function [10,17] and has previously been associated
with parasite burden and markers of immunity in other wild
mammals [15]. Chimpanzees at Ngogo experience a higher
density of ripe fruit trees [38], greater access to high-quality
food items [89,90], and higher overall energy balance [41].
Therefore, we suspect the lower parasite burden observed at
Ngogo traces to increased ability to invest in immune defence
afforded by greater or more reliable access to high-value
foods. Given that our study only considered two chimpanzee
communities, we cannot rule out the influence of other ecologi-
cal differences between communities, such as altitude, faunal
communities and/or human-sourced alteration of habitat.

In summary, our results suggest that the energetic trade-offs
between reproduction and immune function do not exert

substantial impacts on parasite shedding in wild female chim-
panzees. However, we found considerable variation among
individuals and between communities in levels of faecal para-
site shedding, and strong evidence that ageing is
accompanied by parasite-related outcomes that may be reflec-
tive of immunosenescence. These conclusions suggest a future
priority to address drivers of this variation, such as genetics,
sociality and direct measures of energy availability. Finally,
our study could only examine one non-invasive proxyof immu-
nity, and we look forward to future studies that permit a more
complete understanding of the complex interactions between
chimpanzee hosts, their immune system and the community
of microorganisms they support, including insights into how
parasites influence host survival and reproduction.
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