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In humans, senescence increases susceptibility to viral infection. However,
comparative data on viral infection in free-living non-human primates—even
in our closest living relatives, chimpanzees and bonobos (Pan troglodytes and
P. paniscus)—are relatively scarce, thereby constraining an evolutionary under-
standing of age-relatedpatterns of viral infection.We investigated a population
of wild eastern chimpanzees (P. t. schweinfurthii), using metagenomics to
characterize viromes (full viral communities) in the faeces of 42 sexually
mature chimpanzees (22 males, 20 females) from the Kanyawara and Ngogo
communities of Kibale National Park, Uganda. We identified 12 viruses from
at least four viral families possessing genomes of both single-stranded RNA
and single-stranded DNA. Faecal viromes of both sexes varied with chimpan-
zee age, but viral richness increased with age only in males. This effect was
largely due to three viruses, salivirus, porprismacovirus and chimpanzee
stool-associated RNA virus (chisavirus), which occurred most frequently in
samples from older males. This finding is consistent with the hypothesis that
selection on males for early-life reproduction compromises investment in
somatic maintenance, which has delayed consequences for health later in
life, in this case reflected in viral infection and/or shedding. Faecal viromes
are therefore useful for studying processes related to the divergent reproduc-
tive strategies of males and females, ageing, and sex differences in longevity.

This article is part of the theme issue ‘Evolution of the primate ageing
process’.
1. Background
Finite energetic resources catalyse trade-offs between immunity and other
biological processes, such as growth and reproduction [1,2]. Immunosenescence,
the deterioration of the immune system with advanced age, may occur more
rapidly when resources allocated to reproduction outweigh those allocated to
somatic investment, with consequent reductions in health and longevity. Immu-
nosenescence involves a suite of changes to innate and adaptive immune
function, including increased concentrations of circulating proinflammatory
markers [3], decreased thymus size and naive T-cell proliferation [4], and
decreased responsiveness of memory T cells [5]. In humans, immunosenescence
increases susceptibility to novel viral infection [6] as well as reactivation of
latent infections [7]. Common and largely apathogenic viral agents such as
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cytomegalovirus may accelerate immunosenescence through
chronic antigenic stimulation and inflation of virus-specific
CD8+ T cell populations [8,9].

Sex differences in longevity are common across mammalian
species with female life expectancy often greater than that of
males [10], including in humans [11]. This phenomenon may
reflect divergent reproductive strategies. Females are hypoth-
esized to invest more than males in somatic maintenance across
the lifespan because, due to constraints on female reproductive
rates, longevity is more important for female reproductive
success [12]. The importance of early life fertility to male repro-
ductive success, as reflected in the more rapid decline of males’
age-specific fertility [13], likely disincentivizes investment in
somatic maintenance, especially when male–male competition
is high and male investment in offspring is low [14]. Studies of
immune biomarkers support these ideas, suggesting accelerated
immunosenescence in male rhesus macaques (Macaca mulatta)
[15], brown rats (Rattus norvegicus) [16] and roe deer (Capreolus
capreolus) [17]. Similarly, T and B cell populations (including
their proliferative capacity) decline faster in Japanese men than
in women [18], and men exhibit higher innate immune activity,
indicating a sex bias in immunological investment [19]. Men
also experience higher prevalence and load of viral infection
across the lifespan than do women [20], mirroring these trends.

Chimpanzees (Pan troglodytes), our closest living relatives,
provide a valuable comparison for understanding age-related
trade-offs between the energetics of reproduction and other
physiological functions. Critically, chimpanzees live long
lives. In the wild, chimpanzee life expectancy at birth for both
sexes combined ranges from approximately 13 to 33 years
[21], and themaximum lifespan exceeds 60 years [21,22]. Chim-
panzees exhibit a human-like sex-bias in lifespan, with females
living longer than males [21]. Previous studies have examined
energetic trade-offs related to these patterns. Physiological
[23] and observational studies [24] indicate that male chimpan-
zees exhibit greater total daily energy expenditures than do
females, due in part to the greater body mass of males [25]
and the physiological costs of male–male mating competition
[26]. Total energy expenditure rates are expected to correlate
negatively with longevity, as the accumulation of free radicals,
produced by mitochondria [27], spurs senescence [28].

Studies of chimpanzee health and immune function in
the context of energetic trade-offs have largely focused on
gastrointestinal parasites because they can be identified and
enumerated microscopically [29]. These studies suggest that
male reproductive strategies may impose immunological
costs. For instance, at Gombe Stream National Park, Tanzania,
male chimpanzees sometimes exhibit higher prevalence of the
gastrointestinal parasites Strongyloides fulleborni and Iodamoeba
bütschlii than do females [30]. Furthermore, male chimpanzees
who successfully vie for high social status exhibit greater
helminthic parasite richness [31]. By contrast, studies of
chimpanzee gastrointestinal bacterial communities show that,
despite links with season [32] and social behaviour [33],
microbiotal enterotypes do not readily cluster by age or sex [34].

Wild chimpanzees are also exposed to viruses, but most of
our current knowledge about these viruses comes from studies
of highly virulent pathogens [35–39]. Notably, respiratory
disease outbreaks in chimpanzees in Kibale National Park,
Uganda, have been attributed universally thus far to viral patho-
gens [35,36]. Even in these systems, however, there is evidence
suggesting age and sex-related susceptibility. For instance, in
the Kanyawara chimpanzees of Kibale, older individuals of
both sexesweremore likely to exhibit clinical signs of respiratory
disease over a 20-year period than young individuals [40].
Furthermore, clinical signs were more common in males during
the years of peak reproductive effort than at other life stages,
although there was no sex bias among older chimpanzees [40].

In this study, we employed metagenomic next-generation
sequencing to characterize the community of gastrointestinal
viruses (the ‘virome’) in apparently healthy animals from the
Kanyawara and Ngogo chimpanzee communities in Kibale
National Park, Uganda (Kibale, hereafter). In accord with
the expectation that wild chimpanzees, like humans, experi-
ence a prolonged immunosenescence, we predicted that the
presence and burden (i.e. load) of viral infection, measured
as virus shed in faeces, would increase with age in sexually
mature chimpanzees. We also predicted that males, who
invest more heavily in mating competition early in life,
would harbour gastrointestinal viruses at a higher presence
and burden than would females, especially later in life.
2. Methods
(a) Study sites, subjects and sample collection
Between July and October 2016, we collected faecal samples
from chimpanzees in the Kanyawara and Ngogo chimpanzee
communities in Kibale. At the time of sample collection, these
communities comprised approximately 55 and 204 individuals,
respectively. Chimpanzees have been observed continuously at
Kanyawara since 1987 [41] and at Ngogo since 1995 [42].
Faecal samples were collected immediately after an individual
was observed to defecate and stored in RNAlater buffer
(Thermo Fisher Scientific, Waltham, MA, USA) at a 1 : 1 ratio.
Samples were stored at each site at −20°C until transported on
ice to the USA. We analysed one sample from each of 42 individ-
uals ranging in age from 9 to 66 years (Kanyawara males = 10;
Kanyawara females = 10; Ngogo males = 12; Ngogo females =
10). The ages of most individuals in these communities are
known from their dates of birth. The ages of individuals born
in each community before the start of long-term study were esti-
mated based on their physical appearance relative to individuals
of known age and genealogical relationships [21,43].

(b) Viromics
We used metagenomics to identify viruses in chimpanzee faeces,
following previously described methods [44–48]. First, we
homogenized 200 μl of sample (faeces + RNAlater) by bead beat-
ing in 1 ml Hanks balanced salt solution and then treated the
homogenatewith nucleases to reduce DNA and RNA not encapsi-
dated within virions [49]. We then extracted nucleic acids using
the Qiagen QIamp MinElute Virus Spin Kit (Qiagen, Hilden,
Germany), and converted RNA to double-stranded cDNA,
which we then purified using Agencourt AmpureXP beads (Beck-
man Coulter, Brea, CA, USA) as previously described [44–48]. We
then prepared libraries for sequencing on an Illumina MiSeq
instrument (Illumina, San Diego, CA, USA) using 150 × 150 cycle
paired-end (V2) chemistry using the Illumina Nextera XT kit.
These protocols are the same as previously described methods
for sample preparation [44] and bioinformatics analyses [45] and,
in these previous studies, have successfully identified commu-
nities of viruses in clinical samples, including validation with
controls and viral community standards [44–48].

(c) Bioinformatics
We analysed viral sequences using CLC Genomics Workbench
v. 11.0.1 (CLC bio, Aarhus, Denmark). We trimmed sequences
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of low quality and short length (less than 50 bp) and removed
sequences matching known contaminants and host DNA. Remain-
ing reads were then subjected to de novo assembly. We compared
the resultant assembled contiguous sequences, or contigs, to
viruses in the GenBank database at both the nucleotide and
amino acid levels using the BLASTn and BLASTx algorithms,
respectively [50,51]. We retained contigs matching mammalian
viruses for further analysis and disregarded contigs matching
viruses of known non-mammalian hosts (e.g. insects, plants,
fungi). To assess viral loads, we mapped reads back to viral contigs
and calculated the proportion of reads mapping to each virus (for
virus-specific load) or the proportion of reads mapping to any
virus (for total viral load). We then normalized this measure to
one million reads [46] and to the length of the target sequence
(contig) for each virus, such that our final measure of viral load
was viral reads per million per kilobase of target (vRPM/kb),
which is correlated with results from real-time quantitative
polymerase chain reaction [46].

Phylogenetic relationships among viruses were inferred from
viral replicase (polymerase) genes when possible and with other
viral genes when only these were available in GenBank. We first
aligned sequences of newly identified viruses with published
sequences of related viruses in the GenBank database using
the Prank algorithm [52] in TranslatorX [53], with the Gblocks
algorithm [54] applied to remove poorly aligned regions. We
then inferred maximum-likelihood phylogenetic trees from the
resulting alignments using PhyML 3.0 [55] with 1000 bootstrap
replicates to assess statistical confidence in clades. We displayed
final bootstrapped trees using FigTree v. 1.4.4 [56].
(d) Inferential statistics
We calculated the prevalence of each virus by sex and study com-
munity, with 95% confidence intervals computed using the
modified Wald method [57]. We conducted statistical analyses of
viral presence (i.e. sequence reads matching a virus), richness
(i.e. the number of viral species present in a sample), and load
(i.e. vRPM/kb) using R v. 3.5.1 [58]. First, to analyse the presence
of individual viruses, we generated a series of generalized linear
models with a binomial error structure and logit link function
using the ‘glm’ function. In each model, we included the presence
of a virus as the dependent variable and chimpanzee age (as of July
2016), sex, an age by sex interaction, and community as the inde-
pendent variables. When the inclusion of a predictor caused
complete or partial model separation, we removed the term from
the final model. We then constructed parallel linear models
using the ‘lm’ function in R for the following dependent variables:
viral load (for all viruses detected in 10 or more chimpanzees),
viral richness, and total viral load (i.e. reads of all viruses per
million reads per combined kilobase of target sequences) [46,59].
As for viral presence, we included chimpanzee age, sex, an age
by sex interaction, and study community as independent variables.
In all linear models, we evaluated the normality of residuals with
Shapiro–Wilk tests [60] using the ‘shapiro.test’ function in R, as
well as inspection of Q-Q plots [61]. No deviance from normality
occurred, except in the linear model for total viral load. In this
case, we Box-Cox transformed [62] total viral load and ran the
model again.We set alpha to 0.05 in all models. To control formul-
tiple testing, we adjusted all p-values for a given predictor (age,
sex, age * sex and community) using the Benjamini–Hochberg
procedure [63] implemented with the function ‘p.adjust’ in R,
and we report both the original and corrected p-values.
3. Results
We identified 12 viruses in the faeces of chimpanzees (table 1).
Amino acid sequence similarity to known viruses ranged
from 55.91% to 99.26%. The prevalences of each virus, includ-
ing prevalence by sex and study community, are shown
in electronic supplementary material, table S1. Viruses were
detected in all but two of the 42 faecal samples (these two
samples were collected from two females aged 23.7 and 50.5
years, respectively). The overall prevalence of each virus
ranged from 2.4% (95% CI: 0.0%, 13.4%, representing a
single sample) to 45.2% (95% CI: 31.2%, 60.1%, representing
19 samples). A picobirna-like virus exhibited the lowest preva-
lence, whereas three porprismacoviruses exhibited the highest
prevalences. Eight of the 12 viruses were found in both com-
munities. An unclassified circular single-stranded DNA virus
and a picobirna-like virus were detected only in faecal samples
from Kanyawara chimpanzees, whereas an astrovirus and a
salivirus were detected only in faecal samples from Ngogo
chimpanzees. Porprismacoviruses 4 and 5 were more com-
monly detected in the Ngogo community, but tests adjusting
for multiple comparisons indicated that their prevalence at
Ngogo did not exceed their prevalence at Kanyawara (elec-
tronic supplementary material, table S2). There were no other
effects of community.

Results of a linear model showed that viral richness
increased with age in males but not in females (figure 1; β =
0.100, s.e. = 0.031, uncorrected p = 0.003, corrected p = 0.031).
To examine the contributions of each virus to this finding, we
ran a series of post hoc analyses emulating a backward selection
procedure (e.g. Rodríguez-Perálvarez et al. [64]), in which we
removed, one-by-one, the viruses with the largest effect sizes
for the age-by-sex interaction. Removing all three viruses
with the largest effect sizes (salivirus, chisavirus and propris-
macovirus 1; figure 2) reduced the strength of the age-by-sex
interaction and made the trend statistically non-significant
without adjustments for multiple testing (β = 0.051, s.e. =
0.028, uncorrected p = 0.072). To determine whether the
observed change in effect of this sizewas greater than expected
by chance alone, we performed 1000 simulations in which we
removed three viruses at random from the richness calculation.
Only 0.9% of simulated models yielded a p-value as or more
extreme than the observed p-value of 0.072.

The interaction between age and sex exhibited a notable
trend for chimpanzee stool-associated RNA virus (chisavirus;
figure 2b) and porprismacovirus 1 (figure 2c), in that males
were more likely to harbour these viruses as they aged. How-
ever, the effect was not significant for either virus after
controlling for multiple comparisons (electronic supplemen-
tary material, table S2). Total viral load did not vary with
the age-by-sex interaction (β = 0.014, s.e. = 0.018, uncorrected
p = 0.465, corrected p = 0.680). Of the seven viruses for which
viral load could be analysed individually, the interaction
between age and sex predicted only bufavirus load
(β =−0.082, s.e. = 0.019, uncorrected p = 0.003, corrected p =
0.031): bufavirus load increased with age in females and
decreased with age in males.

Age did not influence the presence of any virus (electronic
supplementary material, table S2), nor did age impact viral
richness (β =−0.025, SE = 0.021, uncorrected p = 0.249, correc-
ted p = 0.725), total load (β = 0.003, s.e. = 0.013, uncorrected
p = 0.824, corrected p = 0.871), or load by individual virus (elec-
tronic supplementary material, table S3). Salivirus tended to
occur more frequently in males than in females (β = 3.072,
s.e. = 1.423, uncorrected p = 0.031, corrected p = 0.31) and was
detected in only one female, the oldest individual sampled
(figure 2a). However, sex did not affect the presence of any
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virus, nor did it affect viral richness (β =−1.882, s.e. = 0.975,
uncorrected p = 0.061, corrected p = 0.407), total load
(β =−0.578, s.e. = 0.575, uncorrected p = 0.322, corrected p =
0.644), or load by individual virus (electronic supplementary
material, table S3).
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Figure 2. Presence of (a) salivirus, (b) chisavirus and (c) porprismacovirus 1
in chimpanzee faeces as a function of chimpanzee age. Boxes indicate the
25th and 75th percentiles, and thick black vertical lines indicate medians.
Light and dark boxes indicate females and males, respectively. (Online version
in colour.)
4. Discussion
Although viral infection is thought to be both a cause and con-
sequence of immunosenescence, comparative data from wild
nonhuman primates pertaining to this idea are exceedingly
rare. To investigate the relationship between viral infection
and immunosenescence in our closest living relatives, we
assessed faecal viromes in a population of wild eastern chim-
panzees. We observed age-related changes in the faecal
viromes of both male and female chimpanzees. Most notably,
we observed an age-related increase in viral richness in male
chimpanzees but not in females. Evidence from other primates
connects viromic expansion to immunocompromise and dis-
ease. For example, in captive rhesus macaques, increased
richness of the gastrointestinal virome is correlated with
advanced simian immunodeficiency virus (SIV) infection [65]
and SIV-related gastrointestinal disease [66]. Similarly, in
humans, immunocompromised patients exhibit expanded
skin viromes [67], while patients with inflammatory bowel dis-
ease exhibit richer gastrointestinal viromes [68]. It is, therefore,
plausible that the increased viral richness observed in older
male chimpanzees in our study reflects loss of immunocompe-
tence, supporting the hypothesis that senescence manifests in
the gastrointestinal virome.

This finding supports our central hypothesis that selective
trade-offs between reproduction and somatic maintenance
impact sex differences in immunity, and that this trade-off, in
turn, influences viral infection in chimpanzees. Our results,
which are consistent with data on sex differences in survival
and immune function across animal species [10,69], also
accord with the life-histories of chimpanzees. Life expectancy
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at birth is greater for female chimpanzees than for males [21].
This difference corresponds to differences in reproductive
output: male chimpanzee fertility peaks in early-to-mid
adulthood, around 20 years at Gombe [70] and 25 years at
Kanyawara [71] and Ngogo (KE Langergraber 2020, unpub-
lished data), whereas female chimpanzee fertility shows no
distinct age-related peak [72]. During years of heightened
reproductive output, male chimpanzees compete for receptive
females, an activity that imposes substantial energetic costs
[26,73,74] and may necessitate decreased investment in other
energetically costly processes, such as somatic maintenance.
Notably, we also observed an age-related increase in viral
load in females for a single virus (bufavirus), suggesting that
not all viruses follow the pattern predicted by life-history
theory. Further analyses of the chimpanzee virome promise
to elucidate additional consequences of investing in reproduc-
tion and immune function in this species. For example,
analyses that consider the impact of variation in the social
[75,76] and reproductive status (e.g. De Nys et al. [77]) of indi-
viduals on the chimpanzee virome are likely to be especially
informative in this regard.

Although the quantity and taxonomic classifications of
viruses we found were consistent with those observed in
other primates (e.g. Sawaswong et al. [78]), much about the
viruses identified in this study remains unknown. For example,
three viruses identified in this study cannot yet be classified
within families, complicating inferences about their basic
biology and pathogenesis.With the possible exception of astro-
virus, which can cause diarrhoea [79] and encephalitis [80],
the newly identified viruses are not known to cause disease.
Bufaviruses [81], husaviruses [82], porprismacoviruses [83]
and saliviruses [84] have all been found in human patients
with gastroenteritis, but at present, the relationship between
infection and disease remains largely speculative. Importantly,
most of the viruses we identified did not exhibit clear
associations with either chimpanzee age or sex. This result
underscores a growing understanding of the virome as a com-
munity containing members that range from beneficial to
harmful, rather than an assemblage of pathogens [85,86].
For example, in mice (Mus musculus), commensal viruses
regulate lymphocyte populations and maintain intestinal
homeostasis [87]. Similarly, in captive rhesus macaques, some
gastrointestinal viruses are associated with diarrhoea while
others, including circular single-stranded DNA viruses, are
associated with apparent health [88]. Consequently, some of
the viruses identified in this study may not impose disease or
fitness burdens on chimpanzees. Furthermore, the mode of
transmission of most of these viruses remains unknown. For
example, male chimpanzees are more gregarious [89], engage
in higher levels of aggression [90], may endure higher rates
of wounding, as has been observed in baboons (Papio spp.)
[91], and are more likely to inflict bite wounds risking oral-
blood contact [92]. Thus, male chimpanzees may be both
more exposed and more susceptible to viral infections. In
wild chimpanzees, we suspect that infection with these
poorly known viruses likely results from complex interactions
among exposure, susceptibility and viral biology.

The direction of effect of the trends we have documented
are similarly unclear. For example, our data do not dis-
tinguish among direct effects of immune dysfunction on
viral infection or shedding, age-related differences in
exposure to viruses, or the effects of unmeasured confounds
on both ageing and viral infection/shedding. We also note
that we did not measure immunity (or reproductive energetic
expenditure) directly, nor is it clear how immunity regulates
infection or shedding of the viruses we identified. However,
because viruses are obligate intracellular molecular parasites
[93], viral systems may be particularly suited to examining
immunological trade-offs.

Despite these caveats, the demographic patterns we have
documented may provide a starting point for assessing the
fitness costs of particular viruses, and of interacting viral com-
munities. Notably, we documented an increase in overall viral
richness with male age. Three viruses—salivirus, porprisma-
covirus 1 and chisavirus—drove this trend, in that once they
were removed from the calculation of richness, the effect was
marginally non-significant. Thus, different viruses and sets of
viruseswithin viral communities contribute differently to com-
munity-level trends. Although our sample sizesmay have been
too small to detect the contributions of individual viruses to
this trend, especially given corrections for multiple testing,
we propose that those viruses most strongly associated with
age and other energetically depleted physiological states (e.g.
injury, pregnancy) are likely to be the most harmful agents
within viral communities.

In summary, we observed demographic patterns in the
faecal viromes of wild chimpanzees that are consistent with
life-history theory predicting age- and sex-related energetic
trade-offs between reproduction and somatic maintenance.
Notably, male and female chimpanzees exhibited divergent
age-related patterns, including increased viral richness with
age in males but not females. Several mechanisms could
drive this relationship, ranging from internal processes such
as differential hormone secretion and gene expression [94]
to external processes such as disparate exposure to viruses
and environmental stressors [95,96]. Elucidating these mech-
anisms has great potential for expanding our understanding
of infection biology, life-history theory, and their intersection.
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