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The Bahamas that have remained apparently stable. 
We identified four viruses, all of which are members 
of families known to infect marine fishes (Flaviviri-
dae, Iflaviridae, Narnaviridae, and Nodaviridae), 
but all of which were previously undescribed. Bone-
fish from Florida and Mexico had higher viral rich-
ness (numbers of distinct viruses per individual fish) 
than fish sampled from other areas, and bonefish from 
the Upper Florida Keys had the highest prevalence 
of viral infection (proportion of positive fish) than 
fish sampled from any other location. Bonefish from 
Florida also had markedly higher viral loads than fish 
sampled from any other area, both for a novel narna-
virus and for all viruses combined. Bonefish viruses 
may be indicators of environmentally driven physi-
ological and immunological compromise, causes of 
ill health, or both.

Abstract  Atlantic Bonefish (Albula vulpes) are eco-
nomically important due to their popularity with rec-
reational anglers. In the State of Florida, USA, bone-
fish population numbers declined by approximately 
60% between the 1990s and 2015. Habitat loss, 
water quality impairment, chemical inputs, and other 
anthropogenic factors have been implicated as causes, 
but the role of pathogens has been largely overlooked, 
especially with respect to viruses. We used a metagen-
omic approach to identify and quantify viruses in 
the blood of 103 A. vulpes sampled throughout their 
Western Atlantic range, including populations in 
Florida that have experienced population declines 
and populations in Belize, Mexico, Puerto Rico, and 
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Introduction

Bonefish (Albula spp.) are a complex of morphologi-
cally similar benthivorous marine fishes with a cir-
cumtropical distribution (Colborn et al. 1997; Pickett 
et al. 2020). Bonefish are physiologically adapted to 
high-speed burst swimming (Murchie et  al. 2011). 
This trait and their preference to forage in expan-
sive shallow coastal habitats (“flats”) have made 
them a prized recreational sportfish (Adams 2017). 
Catch-and-release angling for bonefish and associ-
ated tourism generate critical revenue for coastal 
communities around the Western Atlantic tropical 
region. For example, annual recreational fishing for 
bonefish and other flats species has yielded the fol-
lowing most recently estimated economic benefits: 
USD $45 million into Mexico in 2019 (Palomo and 
Perez 2021), USD $50  million into Belize in 2013 
(Fedler 2014), USD $169 million into The Bahamas 
in 2018 (Fedler 2019), and USD $465  million into 
the Florida Keys in 2012 (Fedler 2013). Bonefish are 
also important for maintaining ecological connectiv-
ity among near-shore marine habitats (Murchie et al. 
2019; Perez et al. 2019; Santos et al. 2019), and they 
represent a small but important human food source 
in some regions (Filous et  al. 2020; Rennert et  al. 
2019). Ensuring the sustainability of bonefish popu-
lations through research, management, and conser-
vation is therefore of high ecological and economic 
importance.

One of the largest bonefish fisheries has tradi-
tionally existed in and around Southern Florida and 
the Florida Keys, USA (Ault et  al. 2008). However, 
Florida’s bonefish population declined significantly 
beginning in the 1980s (Rehage et  al. 2019; Santos 
et al. 2019). For example, anglers and fishing guides 
reported a 56% decline in number and a 45% decline 
in size of bonefish caught in South Florida from the 
mid-1980s to 2015 (Rehage et al. 2019), and tourna-
ment fishing records indicate a 32% decrease in the 
number of fish caught per boat per day and a 17% 
decrease in size of the largest fish caught per tour-
nament during this same time period (Boucek et  al. 
2022). This decline began in the Middle and Lower 
Keys, followed by Biscayne Bay, as confirmed by 

multiple data sources (Boucek et  al. 2022; Kroloft 
et  al. 2019; Rehage et  al. 2019; Santos et  al. 2019). 
Although comparable data from Belize, Mexico, 
Puerto Rico and The Bahamas have not yet been 
analyzed, expert knowledge based on interactions 
with long-time fishing guides and anglers indicates 
stable populations in these areas prior to and during 
this study (A. Adams, pers. obs.). Factors implicated 
in the Florida bonefish decline include habitat loss, 
changes in food availability, water quality impair-
ments, weather and hydrological events, organic 
waste and chemicals from coastal communities and 
agriculture, and overexploitation (Brownscombe et al. 
2019; Kroloft et al. 2019). Despite ongoing research 
and recent signs of possible recovery (Boucek et  al. 
2022), the causes remain poorly understood.

Emerging pathogens are responsible for some of 
the most widespread and impactful diseases of wild-
life (Cunningham et  al. 2017; Hassell et  al. 2021; 
McCallum 2012; Scheele et al. 2019), including dis-
eases of wild fishes (Chapman et al. 2021). For exam-
ple, wild stocks of Mediterranean Dusky Grouper 
(Epinephelus marginatus) and Golden Grouper (E. 
costae) have experienced declines from repeated 
lethal epidemics of viral nervous necrosis, caused 
by the endemic red-spotted grouper nervous necro-
sis virus (Nodaviridae: Betanodavirus) (Boukedjouta 
et  al. 2020), cyprinid herpesviruses (Alloherpes-
viridae: Cyprinivirus) likely caused the collapse of 
the Common Carp (Cyprinus carpio) fishery in the 
Upper Mississippi River, USA (Gibson-Reinemer 
et  al. 2017), and viral hemorrhagic septicemia virus 
(Rhabdoviridae: Novirhabdovirus) has emerged 
globally, causing widespread mortality and popula-
tion declines in both freshwater and marine systems, 
including economically important recreational fisher-
ies (Escobar et al. 2018).

Recent research has begun to explore disease 
as a potential cause of, or contributor to, bonefish 
declines. Dunn et  al. (Dunn et  al. 2020) found that 
the composition of bacterial communities on bone-
fish gills differed between fish sampled in the Florida 
Keys and apparently stable populations in The Baha-
mas. The study also documented an increased abun-
dance of potentially pathogenic bacteria on the gills 
of Florida bonefish. Bacteria are, however, difficult to 
categorize as pathogenic based on broad taxonomic 
assignments obtained through 16  S rRNA-based 
amplicon metabarcoding (“microbiome”) analyses 
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(Schlaberg 2019). Viruses offer an intriguing com-
plementary system because they are strictly depend-
ent on the host intracellular molecular machinery for 
reproduction (Koonin et  al. 2021) and because they 
are more likely to emerge in wildlife than bacteria or 
eukaryotic microbes (Cleaveland et  al. 2001, 2007; 
Woolhouse et al. 2005).

In this study, we used metagenomic methods to 
identify viruses in Atlantic Bonefish across their Car-
ibbean range and to examine spatial differences in 
infection rates and intensities. Metagenomic meth-
ods for virus discovery are “agnostic,” in that they 
employ massively parallel but random sequencing of 
nucleic acids from biological samples and compare 
those sequences to databases without a priori knowl-
edge of what viruses might be present (Munang’andu 
et al. 2017; Taş et al. 2021; Zhang et al. 2019). These 
methods have shed important light on viruses of 
marine fishes (Geoghegan et  al. 2018, 2021; Parry 
et  al. 2020), showing that some wild marine fish 
are naturally infected with distant relatives of medi-
cally important viruses, including some of the most 
feared human viruses, such as the ebolaviruses (Filo-
viridae) (Shi et  al. 2018), the coronaviruses (Coro-
naviridae) (Miller et  al. 2021), and the influenza 

viruses (Orthomyxoviridae) (Parry et  al. 2020). We 
applied these methods to blood samples collected 
non-lethally from bonefish in Florida where popula-
tion declines have occurred and to apparently stable 
populations in Belize, Mexico, Puerto Rico, and The 
Bahamas. We sought to test the hypotheses that bone-
fish from impacted populations in Florida would host 
more viruses and at higher intensities of infection 
than bonefish from elsewhere.

Methods

Field sampling

Bonefish were sampled from five areas in the Carib-
bean: Belize, Florida, Mexico, Puerto Rico, and The 
Bahamas (Fig. 1). Bonefish were sampled by angling 
(with spinning and fly-fishing tackle) and by netting 
(except in Florida), as previously described (Danyl-
chuk et  al. 2007; Perez et  al. 2019), as required 
by local laws, regulations, and permits. Sampling 
occurred in Belize near the island of Ambergris Caye, 
Belize District. Sampling occurred in Florida from 
Biscayne Bay in the north to as far south as Key West. 
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Fig. 1   Map of sampling areas: Belize (BZ), Florida, USA (FL), Mexico (MX), Puerto Rico (PR), and The Bahamas (TB). Ellipses 
indicate locations within which bonefish were sampled (see Online Resource 1)
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Sampling in Mexico occurred near the village of Xca-
lak in the State of Quintana Roo on the Yucatan Pen-
insula. Sampling in Puerto Rico occurred near the 
municipal island of Culebra, approximately 27  km 
east of the Puerto Rican mainland. Sampling in The 
Bahamas occurred on the islands of Bimini and Long 
Island. For purposes of analysis, we defined 10 loca-
tions based on physiography and political boundaries: 
Bay and Ocean in Belize (reflecting physiographic 
differences to the west and east of Ambergris Caye, 
respectively); Biscayne Bay, Upper Keys, and Lower 
Keys in Florida; Bay and Ocean in Mexico (reflecting 
physiographic differences to the west and east of Xca-
lak, respectively); Culebra in Puerto Rico; and Bimini 
and Long Island in The Bahamas.

Once a fish was captured, a blood sample of vol-
ume no more than 1% of fish mass (Lawrence et al. 
2020) was collected from the caudal vein of the un-
anesthetized fish using a 20-gauge, 1.5-in needle and 
a 5-ml syringe, then transferred immediately to an 
evacuated plasma preparation tube (PPT) contain-
ing K2EDTA anticoagulant designed for molecular 
analysis (Becton, Dickinson and Company, Franklin 
Lakes, NJ), and inverted repeatedly. All fish were 
measured (fork length) and released at their point 
of capture. All procedures, from capture to release, 
lasted between 1 and 30  min per fish, which mini-
mized duration of handling and ensured that samples 
were collected before capture-induced stress could 
potentially affect viral replication (Gadan et al. 2013; 
Polinski et  al. 2021). Blood samples were stored on 
ice in the field and then centrifuged at 3200 × g for 
15  min within 6  h of collection. Plasma samples 
were then transferred in 0.5-ml aliquots to sterile 
1.2-ml cryovials and mixed with an equal volume 
of 2×  DNA/RNA Shield (Zymo Research, Irvine, 
CA) to preserve nucleic acids under field conditions 
and during transport. Tubes containing plasma were 
stored at −20° C and then shipped on ice to the Uni-
versity of Wisconsin-Madison and stored at −80° C 
until processing.

Sequencing, bioinformatics, and statistical analyses

Plasma samples were sequenced as previously 
described (Bennett et  al. 2020; Sibley et  al. 2016). 
Briefly, samples were centrifuged for 10  min at 
10,000 × g to pellet cellular debris, and total nucleic 
acids were extracted from 200  µl of supernatant 

using the QIAamp MinElute Virus Spin Kit (Qia-
gen, Hilden, Germany), omitting carrier RNA. The 
Superscript IV system (Thermo Fisher, Waltham, 
MA, USA) with random hexamers was used to 
reverse transcribe RNA to cDNA, and cDNA librar-
ies were prepared using the Nextera XT DNA sam-
ple preparation kit (Illumina, San Diego, CA, USA). 
Libraries were sequenced on a MiSeq instrument 
using 150 × 150 cycle V2 paired-end sequencing 
chemistry (Illumina, San Diego, CA, USA), and 
sequencing adapters were removed from the result-
ing reads by on-board Illumina processing software.

Reads were quality screened using CLC Genom-
ics Workbench v20.0.1 (CLC Bio, Aarhaus, Den-
mark). Reads were truncated at the first occur-
rence of a base with a Phred (quality) score of 30 
or lower, and reads shorter than 50 bases in length 
were excluded from further analyses. Reads match-
ing known reagent contaminants were removed 
by subtractive mapping. Reads attributable to tel-
eost fish were removed by subtractive mapping to 
the assembled Common Carp (Cyprinus carpio) 
genome (accession LN590720.1) at a length frac-
tion of 0.7 and a similarity fraction of 0.8. Remain-
ing reads were subjected to de novo assembly using 
the SPAdes assembler v3.12.0 (Bankevich et  al. 
2012). Contiguous sequences (contigs) shorter than 
500 nucleotides were discarded, and remaining con-
tigs were screened for redundancy using cd-hit (Li 
and Godzik 2006).

A multi-stage homology search approach was then 
used to identify contigs representing putative viruses. 
First, we used the blastx algorithm (Altschul et  al. 
1990) implemented in CLC Genomics Workbench 
to assign sequence homology at the protein level to 
viruses in the GenBank database. Contigs matching 
known viral proteins with an E value less than 10−4 
were subjected to further investigation (Viljakainen 
et  al. 2018). Then, putative viral contigs were com-
pared individually at the amino acid and nucleotide 
levels to viruses in GenBank (Sayers et  al. 2019) 
using the tblastx and blastn algorithms, respectively. 
After a contig was confirmed to represent a virus, the 
bonefish read set containing the highest number of 
reads mapping to that contig with full coverage was 
selected and subjected to de novo assembly using 
SPAdes. Finally, NOVOPlasty (Dierckxsens et  al. 
2017) was applied to extend each viral contig to its 
maximum attainable length.
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Protein coding regions of putative viral con-
tigs were identified and checked manually using 
ORFfinder (Wheeler et al. 2003). Nearest known rela-
tives of detected viruses were identified by compari-
son of the longest available portion of the viral rep-
licase gene in GenBank using the blastx algorithm. 
Phylogenies of viruses were inferred using the same 
replicase gene sequences aligned to those of their 
nearest neighbors using a codon-based version of the 
MUSCLE algorithm (Edgar 2004), with the Gblocks 
algorithm applied to remove poorly aligned regions 
(Talavera and Castresana 2007), implemented in 
TranslatorX (Abascal et  al. 2010). Alignments were 
checked and minor manual adjustments made as 
needed. Maximum likelihood phylogenetic trees were 
then inferred from each alignment, and 1000 boot-
strap replicates were used to assess statistical support 
for clades using PhyML 3.0 (Guindon et  al. 2010; 
Guindon and Gascuel 2003) with smart model selec-
tion (Lefort et al. 2017). Trees were displayed using 
FigTree v1.4.4 (Rambaut 2016).

Viral loads were quantified using normalized read 
depths, as previously described (Negrey et al. 2020). 
Briefly, reads from each bonefish were mapped to 
the replicase gene sequence of each virus at a strin-
gency of 90%. Mapped reads were then normalized 
for sequencing depth and target sequence length, 
expressed as log10 viral reads per million total reads 
per kilobase of target sequence (Log10 (vRPM/
kb + 1)), which correlates with quantitative real-time 
polymerase chain reaction data (Toohey-Kurth et  al. 
2017). For analyses of positivity or negativity, bone-
fish with a value of ≥ 1 to a given virus by this metric, 
over a read length of ≥ 50 bases, were classified as 
positive for that virus.

Inferential statistical analyses were performed 
using R v4.0.5 (R Core Team 2021). Viral richness 
(number of viruses detected in a fish), prevalence 
(proportion of fish in a population positive for each 
individual virus or for any virus), and loads (normal-
ized read depths for each individual virus or for all 
viruses combined in a fish) were analyzed as outcome 
variable in generalized linear mixed effects mod-
els (GLMER) in the R package LME4 (Bates et  al. 
2015). Models were optimized for the empirical dis-
tributions of their associated data (see “Results” sec-
tion) and were fitted with sampling area as a fixed 
effect and the following as random effects: location, 
sampling month, sampling year, and fish length. This 

approach allowed us to examine the effect of sampling 
area on viral outcomes while controlling for spatial 
and temporal autocorrelation. Overall significance of 
sampling area was computed by comparison to a null 
model using likelihood ratio tests. In instances where 
small sample sizes and/or low viral prevalence pre-
cluded this approach, we assessed variation in viral 
outcomes among sampling locations and in relation to 
fish length using Kruskal-Wallis tests and Spearman’s 
rank-order correlation, respectively.

Results

Fish and viruses

We sampled and analyzed 103 bonefish, including 
18 from Belize, 54 from Florida, 10 from Mexico, 7 
from Puerto Rico, and 14 from The Bahamas (Online 
Resource 1 and 2). No fish sampled had any out-
ward signs of illness (e.g., visible lesions or behav-
ioral deficits). Metagenomic sequencing of these 103 
bonefish yielded a total of 859,875,768 sequence 
reads and 27,967,969,413 bases of total data. The 
average number of reads per bonefish passing qual-
ity filters was 1,666,426. Overall, we assembled a 
total of 413,666 contigs with an average length of 
1060 nucleotides. Among these contigs, we identified 
four viruses in the families Flaviviridae, Iflaviridae, 
Narnaviridae, and Nodaviridae: alvulp flavivirus 
1 (AvFLV-1); alvulp iflavirus 1 (AvIFV-1); alvulp 
narnavirus 1 (AvNAV-1); and alvulp nodavirus 1 
(AvNOV-1), respectively (GenBank accession num-
bers OM469322–OM469325). Each virus is 78–81% 
similar at the amino acid level to known viruses in 
GenBank within the regions of the RNA-dependent 
RNA polymerase genes sequenced (Table 1). Phylo-
genetic trees show each virus to be a novel member of 
a taxon that has previously been identified in marine 
fishes (Fig. 2).

Viral richness

A generalized linear mixed effects regression model 
(GLMER) with the Poisson error family and the 
Laplace approximation method was the best fit for 
examining the influence of geography on viral rich-
ness. Viral richness was significantly higher in Flor-
ida and Mexico than in other areas (Fig.  3; Online 
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Resource 11; Chi-squared = 16.30, df = 4, P = 0.002). 
Viral richness did not differ significantly among 
locations within areas (Fig.  3; Online Resource 1; 
Kruskal-Wallis Chi-squared = 9, df = 9, P = 0.44). 
However, the Upper Florida Keys had the highest 
richness of any location in the study, with 3 out of the 
4 viruses detected (Online Resource 1). Viral rich-
ness for other locations ranged from zero to 2 (Fig. 3; 
Online Resource 1). Fish length was not significantly 
associated with viral richness (Kruskal-Wallis Chi-
squared = 1.113, df = 91, P = 0.57).

Viral prevalence

Generalized linear mixed effects models were the 
best fit for examining the influence of geography 
on infection, with the status of each fish (positive 
or negative for a given virus or for any virus) coded 
as a binomial response variable and area and loca-
tion as predictors. The prevalence of AvNAV-1 var-
ied among areas, with fish from Florida and Mexico 
having significantly higher prevalence than fish from 
all other locations (29.6% and 50.0%, respectively) 
(Fig.  4; Online Resource 1; Chi-squared = 21.07, 
df = 4, P < 0.001). AvFLV-1 displayed a similar but 
not statistically significant pattern (Fig.  4; Online 
Resource 1; Chi-squared = 7.96, df = 4, P = 0.09). 
Prevalence of AvIFV-1 and AvNOV-1 did not differ 
significantly among areas (Fig.  4; Online Resource 
1; Chi-squared = 2.04, df = 4, P = 0.73). AvNOV-1 
was detected in only 3 fish from Belize (one from the 
bay side and two from the ocean side). Prevalence 
of any virus, however, did differ among areas, with 
Mexico and Florida having the highest prevalence 
of any virus and The Bahamas having zero preva-
lence of all viruses (Fig. 4; Online Resource 1; Chi-
squared = 15.71, df = 4, P = 0.003).

Locations within areas also differed statistically 
with respect to viral prevalence (Online Resource 1). 
Specifically, fish from the Upper Florida Keys and 
both locations in Mexico had significantly higher 
prevalence of AvNAV-1 than fish from other loca-
tions (50.0%, Kruskal-Wallis Chi-squared = 20.31, 
df = 9, P = 0.02). Similarly, fish from the Upper Flor-
ida Keys had higher prevalence of infection with any 
virus (57.1%) than fish from any other location in 
the study; however, this relationship was marginally 
non-significant (Fig. 4; Online Resource 1, Kruskal-
Wallis Chi-squared = 16.83, df = 9, P = 0.051). Fish 
length was not significantly associated with positiv-
ity for each individual virus (Kruskal-Wallis Chi-
squared = 0.058–0.097, df = 91, P = 0.78–0.81) or 
with positivity for any virus (Kruskal-Wallis Chi-
squared = 0.871, df = 91, P = 0.35). All AvFLV-
1-positive fish (n = 9) were also AvNAV-1-positive, 
revealing a significant association between these 
two viruses (Fisher’s exact P < 0.001) in the posi-
tive direction (i.e., 14 AvNAV-1-positive fish were 
AvFLV-1-negative). No other associations between 
viruses were significant (Fisher’s exact P > 0.86 in all 
cases).

Viral load

A GLMER model with a Gaussian error distribu-
tion family and a log transformed response variable 
was the best fit for examining the influence of geog-
raphy on viral load (both individual viruses and all 
viruses combined). AvNAV-1 loads were 12 times 
higher in fish from Florida than in fish from Puerto 
Rico, the area with the next-highest load of this 
virus (Fig. 5; Online Resource 1; Chi-squared = 6.40, 
df = 2, P = 0.04). Loads of AvFLV-1 were 9 times 
higher in fish from Florida than in fish from Mexico, 

Table 1   Viruses identified in Atlantic Bonefish (Albula vulpes)

1 AvFLV-1, alvulp flavivirus 1; AvIFV-1, alvulp iflavirus 1; AvNAV-1, alvulp narnavirus 1; AvNOV-1, alvulp nodavirus 1
2 Closest relative in the GenBank database (source, country, and accession in parentheses)
3 Percent amino acid identity to the closest relative in the GenBank database

Virus1 Accession Genome Family Closest relative2 % ID3

AvFLV-1 OM469322 +ssRNA Flaviviridae Trinbago virus (tick, Trinidad and Tobago, MN025505.1) 80.94
AvIFV-1 OM469323 +ssRNA Iflaviridae Perina nuda virus (moth, Taiwan, NC_003113.1) 81.29
AvNAV-1 OM469324 +ssRNA Narnaviridae Wuhan insect virus 18 (insect, China, KX883516.1) 78.64
AvNOV-1 OM469325 dsRNA Nodaviridae Shuangao insect virus 11 (insect, China, NC_033265.1) 78.42
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the area with the next-highest load of this virus, but 
this was not statistically significant likely due to low 
prevalence of AvFLV-1 (Fig.  5; Online Resource 
1; Chi-squared = 0.34, df = 1, P = 0.56). Loads of 
AvIFV-1 did not differ significantly among areas 
(Fig.  5; Online Resource 1; Kruskal-Wallis Chi-
squared = 1.00, df = 1, P = 0.32). Loads of all viruses 
combined were higher in fish from Florida than in 
fish from elsewhere, likely due to the influence of 
AvNAV-1, but this trend was marginally non-signifi-
cant (Fig. 5; Online Resource 1; Chi-squared = 7.22, 
df = 3, P = 0.06).

Loads of AvNAV-1 were statistically significantly 
higher in the Lower Florida Keys and Biscayne Bay 
than in fish from elsewhere (Kruskal-Wallis Chi-
squared = 11.815, df = 5, P = 0.037). Fish from the 
Upper Florida Keys had noticeably higher loads 
of AvFLV-1 and AvIFV-1 than fish from any other 
location in the study (Fig. 5), but this trend was not 
significant (Kruskal-Wallis Chi-squared = 0.91, 
df = 1, P = 0.55), likely due to the low prevalence 
of this virus (Online Resource 1). Interestingly, two 
fish from the Lower Florida Keys had conspicu-
ously higher viral loads than any other fish analyzed 
(Fig.  5). These outliers had loads of AvNAV-1 of 
approximately 1 × 10−1 and of all viruses combined 
of approximately 5 × 10−1 (likely due to the influence 
of AvNAV-1). Exclusion of these outliers from statis-
tical analyses did not change the significance of any 
results reported above. Fish length was not signifi-
cantly associated with loads of any individual virus 
(Spearman’s r = −0.50–0.30, df = 22, P = 0.18–0.99), 
but fish length was positively associated with the load 
of all viruses combined (Spearman’s r = 0.39, df = 24, 
P = 0.049).

Discussion

We identified four previously undescribed viruses in 
blood plasma from 103 bonefish sampled across their 
western Atlantic range. Bonefish from Florida and 
Mexico had higher viral richness than fish sampled 
from other areas, and bonefish from the Upper Flor-
ida Keys had higher prevalence of infection with any 
virus than fish from other sampled locations. Bone-
fish from Florida also had markedly higher loads of 
AvNAV-1 and of all viruses combined than fish sam-
pled from any other region. Two fish from the Lower 

Florida Keys had loads of AvFLV-1 approximately 
ten times higher than the next most intensely infected 
fish in the study (Fig. 5). In aggregate, these results 
support the hypothesis that bonefish from populations 
in Florida where population declines have occurred 
harbor more viruses and at higher viral loads than 
bonefish in Belize, Mexico, Puerto Rico, and The 
Bahamas, where bonefish populations appear to have 
remained stable (Perez et al. 2021).

We also observed differences in metrics of viral 
infection among locations within areas. Bonefish 
from the Upper Florida Keys had higher overall viral 
prevalence and higher loads of AvNAV-1 than fish 
from the two other Floridian locations. Because viral 
load is measured only for infected individuals, it is 
more robust to bias than other measures that rely on 
classifying individuals as positive or negative. Viral 
load may also be more closely linked to the physi-
ological and immunological state of a fish than other 
measures, because viral loads often increase rapidly 
when host responses that would normally suppress 
virus replication become impaired (Chen et al. 2014; 
Collet 2014; Munang’andu and Evensen 2019). We 
interpret these trends with caution, however, because 
of limited geographic resolution in data on bone-
fish population declines, limited sample sizes in our 
study, our cross-sectional study design, and imper-
fect knowledge about anti-viral defenses in A. vulpes. 
For example, declines appear to have occurred more 
markedly in the Florida Keys than in Biscayne Bay, 
which is not reflected in our findings.

The clinical effects of the viruses identified are 
unknown; they may result from compromised physi-
ology and immune function, cause ill health, or both. 
None of the bonefish sampled had clinical signs 
(e.g., visible lesions or behavioral deficits), suggest-
ing that the viruses identified are not severe patho-
gens. Indeed, some relatives of these viruses appear 
to be benign commensals (Geoghegan et  al. 2021; 
Shi et al. 2018). Other relatives of these viruses are, 
however, known fish pathogens, although we caution 
against inferring pathogenic potential from phyloge-
netic relatedness. The family Nodaviridae, to which 
AvNOV-1 belongs, contains the causative agents of 
viral nervous necrosis and viral encephalopathy and 
retinopathy, which affect nearly 200 marine fish spe-
cies and cause lethal epidemics in approximately 1/3 
of those species (Bandin and Souto 2020). The fam-
ily Flaviviridae, to which AvFLV-1 belongs, contains 
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Leuven noda-like virus 3 (wasp, Belgium, MZ443621.1)

Nelson noda-like virus 1 (wasp, New Zealand, MZ443628.1)

Macrobrachium rosenbergii nodavirus (shrimp, China, FJ751226.1)

Penaeus vannamei nodavirus (shrimp, Belize, NC_014978.1)

Alvulp nodavirus 1 (bonefish, Belize, OM469325.1)

Nodaviridae sp. (bird, China, MW826491.1)

Shuangao insect virus 11 (insect, China, NC_033265.1)

Shuangao noda-like virus 1 (insect, China, KX883120.1)

Nodamura virus (mosquito, Japan, NC_002690.1)

Lutzomyia nodavirus (sandfly, Brazil, KR003799.1)

Nodaviridae sp. (bird, China, MW826389.1)

Nodaviridae sp. (pig, USA, MK014575.1)

100

100

100

99

55

Nodaviridae

Bole tick virus 4 (tick, Thailand, MN095535.1)

Trinbago virus (tick, Trinidad and Tobago, MN025505.1)

Wenzhou pesti-like virus 1 (shark, China, MG599982.1)

Xiamen fanray pesti-like virus (ray, China, MG599985.1)

Wenling pesti-like virus 2 (shark, China, MG599983.1)

Alvulp flavivirus 1 (bonefish, USA, OM469322.1)

Bemisia tabaci pesti-like virus 1 (whitefly, China, MW256672.1)

Bole tick virus 4 (tick, Romania, MW561133.1)

Nanhai dogfish shark pesti-like virus (shark, China, MG599984.1)

94

100

100

71

84

Flaviviridae

76

66

Iflaviridae

Red gurnard iflavirus (fish, Australia, OL804369.1)

Perina nuda virus (moth, Taiwan, NC_003113.1)

Diamondback moth iflavirus (moth, China, NC_034384.1)

Alvulp iflavirus 1 (bonefish, Belize, OM469323.1)

Ectropis obliqua picorna-like virus (moth, China, NC_005092.1)

Iflavirus sp. (bat, Croatia, MG963177.1)

Tiger flathead iflavirus (fish, Australia, OL804370.1)

Iflaviridae sp. (bird, China, MT137960.1)

Spodoptera exigua iflavirus 2 (moth, South Korea, NC_023676.1)

100

80

90

100

Barns Ness breadcrumb sponge narna-like virus 4 (sponge, United Kingdom, MF190030.1)

Narnaviridae sp. (flea, China, MZ396011.1)

Wuhan insect virus 18 (insect, China, KX883516.1)

Tiger flathead narna-like virus (fish, Australia, OL804385.1)

Alvulp narnavirus 1 (bonefish, USA, OM469324.1)

Pygmy goby narna-like virus (fish, Australia, OL804383.1)

Entomophthora narnavirus A (cabbagefly, Denmark, MK940812.1)

Sand whiting narna-like virus (fish, Australia, OL804383.1)

96
74

Narnaviridae

100

100

100
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Cyclopterus lumpus virus, associated with an emerg-
ing liver disease of Lumpfish (Cyclopterus lumpus) 
that causes over 50% mortality in aquaculture set-
tings (Skoge et  al. 2018). Viruses within the fam-
ily Narnaviridae, to which AvNAV-1 belongs, have 
been found at elevated prevalence in dead and dying 
farmed Atlantic Salmon, although their role as patho-
gens remains unclear (Bateman et al. 2021). Narnavi-
ruses may actually infect symbionts of their apparent 
vertebrate hosts, such as internal parasites or disease-
associated fungi, perhaps explaining observed asso-
ciations with disease (Fay et  al. 2022; Geoghegan 
et al. 2021). Viruses within the family Iflaviridae, to 
which AvIFV-1 belongs, have been found in pooled 
tissue samples of Tiger Flathead (Neoplatycephalus 
richardsoni) and Red Gurnard (Chelidonichthys cucu-
lus) from coastal waters of New South Wales, Aus-
tralia (Geoghegan et al. 2021). Like the narnaviruses, 
the iflaviruses may infect endoparasites and thus indi-
rectly reflect parasite loads, which appears to be the 
case in mice (Fay et al. 2022).

Certain patterns we have documented remain unex-
plained. For example, we detected AvNOV-1 only in 
Belize. AvNOV-1 could be a virus with a restricted 
geographic range, or it could occur elsewhere at low 
prevalence or below the limit of detection of our assay 
(Toohey-Kurth et  al. 2017). We similarly have no 
clear explanation for why some metrics of infection 
in fish from Mexico are comparable to levels in fish 
from Florida. Our sampling locations in Mexico bore 
little resemblance to those in Florida with respect to 
the degree or extent of anthropogenic disturbance. In 
Mexico at the time of sampling, we did observe a dis-
tinct overabundance of brown macroalga of the genus 
Sargassum, which has been responsible for harmful 
algal blooms across the Atlantic Basin in recent dec-
ades (Fidai et al. 2020; Langin 2018; Lapointe et al. 
2021). We observed bonefish actively avoiding decay-
ing algal mats, perhaps in response to hypoxia, high 
microbial concentrations, or chemical byproducts of 
algal decomposition. Such observations are anecdo-
tal, of course, but potential links between bonefish 

health and large-scale ecological changes merit con-
sideration (Alfonso et  al. 2021; Shultz et  al. 2016). 
Our finding of a weak but significantly positive rela-
tionship between the combined load of all viruses 
and fish length could indirectly reflect an association 
between viral infection and fish age (Rennert et  al. 
2019), as has been documented for other wildlife spe-
cies (Negrey et al. 2020). Finally, the strong positive 
association between AvNAV-1 and AvFLV-1 might 
reflect similar transmission dynamics or biological 
interaction between these viruses in the host.

Consistent with the findings presented here, we 
previously documented that gill microbiomes of 
Florida bonefish have an overabundance of poten-
tially pathogenic bacteria compared to fish from other 
Western Atlantic populations (Dunn et  al. 2020). 
This finding could reflect elevated levels of microbial 
contamination in the waters of Florida, such as from 
sewage or agricultural runoff (see below). Viral dis-
eases of ectothermic vertebrates are also associated 
with changes in the structure of host microbiomes 
(Campbell et  al. 2019), suggesting possible syner-
gies among classes of infectious agents. In this light, 
we note that we did not examine viral communities 
in the water at our sampling locations (due to logistic 
constraints of sampling seawater for viruses; Bofill-
Mas and Rusiñol 2020). Therefore, we could not test 
the hypothesis that increased prevalence and loads of 
viruses in Florida bonefish resulted from increased 
viral concentrations in the marine environment. How-
ever, bonefish are known to move locally and some-
times over long distances (Boucek et al. 2019; Mur-
chie et al. 2013, 2015; Santos et al. 2019), such that 
associating the virome of an individual fish with the 
environment at its precise site of capture would likely 
offer only limited information about the origins of its 
infections.

Our choice of blood for analysis restricted our 
findings to viruses present in this body compartment. 
Blood can be collected from fish non-lethally (Law-
rence et al. 2020), which is requisite for an economi-
cally and socially important (and legally protected 
in some areas) species such as A. vulpes. Moreover, 
viremia (viruses in blood) reflects systemic infec-
tion (Munang’andu and Evensen 2019). Prior stud-
ies of marine fish viromes have analyzed organ tis-
sues from commercially harvested fish (Geoghegan 
et al. 2018, 2021; Shi et al. 2018). This methodologi-
cal difference and our focus on a single fish species 

Fig. 2   Maximum likelihood phylogenetic trees of bonefish 
viruses and their relatives in four virus families. Virus names 
are followed (in parentheses) by host, country, and GenBank 
accession number. Viruses identified in the present study are in 
bold with silhouettes. Numbers beside branches are bootstrap 
values based on 1000 replicates; only values ≥ 50% are shown. 
Scale bars = 0.5 substitutions per site

◂
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may explain why we documented a lower diversity of 
viruses than in these previous studies. Similarly, these 
previous studies were conducted in Asia and Oceania, 
where fish viromes likely differ from those in North 
America. This biogeographic difference may explain 
why the viruses we identified in Atlantic Bonefish 
cluster separately from viruses in fish from China 
and Australia (Fig. 2). Finally, because our study was 
cross-sectional, we could not examine the stability 
of viromes over time. Follow-up studies involving 
repeated sampling of populations or, ideally, individ-
ual fish that have been marked, tagged, and released 
(Perez et al. 2019) would likely prove informative.

Chronic environmental stressors such as rising 
water temperature and declining water quality can 
compromise fish physiology and immune func-
tion (Gadan et al. 2013; Grant et al. 2003; Inendino 
et  al. 2005; Snieszko 1974). In turn, compromised 
fish physiology and immune function can impair 
host immune responses and increase susceptibility 
to viral infection and replication (Gadan et al. 2013; 
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Fig. 4   Viral prevalence by area. Prevalence is the proportion 
of individual bonefish in which a given virus is detected. Col-
umns indicate the prevalence of each virus and error bars indi-
cate standard errors of the mean. Viruses are (1) alvulp flavivi-
rus 1 (AvFLV-1); (2) alvulp iflavirus 1 (AvIFV-1); (3) alvulp 
narnavirus 1 (AvNAV-1); (4) alvulp nodavirus 1 (AvNOV-1); 
and (N) any viruses (i.e., at least one of the four aforemen-
tioned viruses). Blank columns indicate lack of detection 
of a virus in that area. Prevalence values are given in Online 
Resource 1
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Fig. 5   Viral load by area. Viral load is the intensity of infec-
tion of an individual fish with a given virus, expressed as the 
normalized number of sequence reads mapping to a given 
virus on a log10 scale (see text for further explanation), here 
multiplied by 1000 for clarity. Values for individual fish are 
represented by open circles, horizontal lines indicate means, 
and error bars indicate standard errors of the mean. Only 
virus-positive fish are included. Viruses are (1) alvulp flavivi-
rus 1 (AvFLV-1); (2) alvulp iflavirus 1 (AvIFV-1); (3) alvulp 
narnavirus 1 (AvNAV-1); (4) alvulp nodavirus 1 (AvNOV-1); 
and (L) all viruses combined. Blank columns indicate lack of 
detection of a virus in that area. The two highest data points in 
Florida (column 3) are the outliers described in the main text. 
Viral load values are given in Online Resource 1

Fig. 3   Viral richness by area. Richness is the number of 
viruses detected in an individual bonefish. Columns indi-
cate mean richness and error bars indicate standard errors of 
the mean. Values for individual fish are represented by open 
circles. Sample sizes of fish are 18 (Belize), 54 (Florida), 10 
(Mexico), 7 (Puerto Rico), and 14 (The Bahamas). Location-
specific sample sizes and richness values are given in Online 
Resource 2
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Grant et  al. 2003; Inendino et  al. 2005). Florida’s 
marine environments have experienced substan-
tial environmental degradation. Freshwater flows 
that reach southern Florida’s coastal waters are 
high in nutrients and coliform bacteria from out-
dated wastewater infrastructure and agricultural 
and urban runoff (Glibert et al. 2021; Herren et al. 
2021; Lapointe and Clark 1992; Liang et al. 2013). 
Pharmaceutical residues, hormones, heavy metals, 
and other contaminants related to urbanization and 
industrialization also impact these waters (Carna-
han et al. 2008; Durán-Álvarez et al. 2021; Ng et al. 
2021; Singh et al. 2010). These stressors are likely 
affecting Florida’s bonefish populations, includ-
ing their health (Brownscombe et al. 2019; Kroloft 
et  al. 2019). Lack of reported bonefish illness or 
mortality events (“fish kills”) does not preclude 
health declines, because an ill or weakened bonefish 
would quickly succumb to predators (Danylchuk 
et al. 2007; Moxham et al. 2019).

We suggest that future research investigate not 
only the pathogenicity of the viruses we have identi-
fied (and others yet to be discovered), but also their 
interactions with anthropogenic stressors. Should 
such links be identified, the solutions are likely to 
require an “one health” mindset in which particular 
environmental drivers are identified and acted upon 
with the expectation of multiple benefits (Danovaro 
et al. 2021; Schweizer et al. 2022). Ecosystem-level 
improvements to water quality, for example, would 
likely have broad benefits beyond safeguarding 
bonefish health, ideally leading to improved human 
health and ecosystem integrity. Such considerations 
should form the basis for evidence-based ecological 
and social-ecological management, with the goal of 
improving the health and sustainability of bonefish 
populations and the ecosystems they inhabit (Holder 
et al. 2020; Hughes 2015; Hyder et al. 2020).
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