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Abstract

Pathogen surveillance for great ape health monitoring has typically been performed on non-

invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. How-

ever, many important primate pathogens, including known zoonoses, are shed in saliva and

transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva sam-

ples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in

Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified

CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviri-

dae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to

87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral

cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Her-

pesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses

identified have been shown to cause disease in chimpanzees or, to our knowledge, in

humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral flu-

ids in sanctuaries may be lower than commonly assumed.

Introduction

Sanctuaries throughout Africa house and care for thousands of wild-born non-human pri-

mates (NHPs) that have been rescued from the illegal bushmeat and pet trades [1, 2]. In this

setting, human caretakers typically have frequent, direct contact with NHPs with different geo-

graphic origins and histories which provides great opportunity for zoonotic pathogen trans-

mission [3, 4]. One risk in such settings is NHP bites [5, 6]. NHP bites can cause severe

physical injury, can become infected, and can transmit infectious agents, some of which are

severely pathogenic in people [5, 7–11]. For example, herpes B virus, which infects macaques

(Macaca spp.) often asymptomatically, is frequently lethal in humans [5]. Human infections
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with apathogenic simian foamy viruses (SFVs) and with oncogenic primate T-lymphotropic

viruses have resulted from NHP bites in hunters and occupational workers (e.g., people

employed in research and zoo settings) [12–15]. Some viruses, such as Epstein-Barr virus of

humans, are thought to be transmitted in saliva without an inciting bite [16, 17]. Furthermore,

many viruses that can be detected in saliva can be transmitted through other routes (e.g.,

SARS-CoV-2: respiratory droplets [18]; herpes B virus: urine, feces, scratches [19]).

In addition to concern for virus transmission between sanctuary NHPs and sanctuary

workers, the possible introduction and spread of viruses among and between NHP social

groups and species warrants screening for pathogens that could impact relocation or reintro-

duction efforts [5, 20–23]. For example, human herpes simplex virus type 1, which has yet to

be documented in wild mountain gorilla (Gorilla beringei beringei) populations, was detected

in oral lesions of a sanctuary-housed juvenile eastern lowland gorilla (G. b. graueri) in Demo-

cratic Republic of Congo [20, 23].

The most commonly housed NHP at Pan African Sanctuary Alliance member sanctuaries

is the chimpanzee (Pan troglodytes) [24, 25]. Thus, the majority of prior studies regarding

sanctuary NHP health have been focused on chimpanzees [27]. Historically, research address-

ing viral infections in sanctuary-housed chimpanzees has been limited to using fecal and blood

samples to determine what viruses are present in these populations [26, 27]. Thus far, these

studies have shown that sanctuary chimpanzees are infected with a number of viruses that

have rarely been associated with disease [28–30].

Despite the recognized risk of pathogen transmission, studies focused on viral infections in

saliva from captive chimpanzees are few. Experimental infection of chimpanzees in research

settings has suggested that saliva is a transmitting agent for certain human hepatitis viruses

[31, 32]. In zoo- and laboratory-housed chimpanzees, there are reports of focal epithelial

hyperplasia [33–35], a benign oral condition that has been associated with a papillomavirus,

Pan paniscus papillomavirus type 1, first identified in zoo-housed bonobos (Pan paniscus)
[36–38]. In wild chimpanzee populations, non-invasive saliva sampling has been recognized as

a potentially valuable tool for pathogen detection, however, to our knowledge, only once has it

been used to screen for a certain virus of interest (i.e., monkeypox virus) [39, 40].

When possible, the use of diverse and alternative sample types, such as saliva, may contrib-

ute to great ape health assessments by improving pathogen detection capabilities [16, 39–41].

There are limitations innate to all types of clinical samples regarding their suitability for the

detection of pathogens due to differences in microbial properties, cellular and tissue tropism,

and transmission routes [16, 42–44]. For example, rhinovirus C, a human respiratory patho-

gen that was associated with a lethal respiratory outbreak in wild chimpanzees in Uganda in

2013, is unlikely to be reliably detected in fecal samples due to virion characteristics that are

not compatible with survival in the gastrointestinal tract [45]. Furthermore, certain enteric

viruses (i.e., viruses of the gastrointestinal tract), which are known to be transmitted by the

fecal-oral route, have been shown to replicate in the salivary glands and transmit through

saliva in a mouse model [46]. Yet the results of viral diagnostics using saliva are likely to over-

lap with some of the more commonly utilized sample types. For example, certain viruses that

are known to replicate in the oral cavity (e.g., SFV) can also be detected in peripheral blood

mononuclear cells (an approach that has been employed in the chimpanzee sanctuary setting

[6, 47]) and feces [48].

In this study, using metagenomic methods, we characterized viruses in saliva collected

from two African sanctuary chimpanzee populations: A) Tchimpounga Chimpanzee Rehabili-

tation Centre (TCRC) in Republic of Congo and B) Ngamba Island Chimpanzee Sanctuary

(NICS) in Uganda. Previously, we analyzed plasma samples from these same populations and

found no evidence of pathogenic viruses and that sanctuary chimpanzees are infected with
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many of the same types of viruses as their wild counterparts [26]. To our knowledge, this study

is the first to identify viruses in saliva samples from sanctuary-housed chimpanzees which

addresses the possibility that pathogenic viruses are being shed in saliva and could be transmit-

ted to sanctuary personnel. Together with our prior surveillance using plasma, results from the

current study could have implications for occupational health and safety of NHP sanctuary

personnel, sanctuary management, and wild chimpanzee conservation efforts.

Methods

Ethics statement

Research at the sanctuaries was approved by the Institutional Animal Care and Use Commit-

tees at the University of Michigan (#8102) and Harvard University (#14-07-206-1). Addition-

ally, research was approved by the Republic of Congo Ministry of Scientific Research and

Technological Innovation and Jane Goodall Institute Congo for TCRC and the Uganda Wild-

life Authority, the Uganda National Council for Science and Technology, and Chimpanzee

Sanctuary and Wildlife Conservation Trust for NICS. Samples were shipped to the USA under

Convention on International Trade in Endangered Species of Wild Fauna and Flora permits:

Republic of Congo permit CG1126038 and USA permit 20US56953D/9 (TCRC); Uganda per-

mit 004877 and USA permit 20US09881D/9 (NICS). Research complied with the standards

outlined by the Pan African Sanctuary Alliance and adhered to the American Society of Prima-

tologists Principles for the Ethical Treatment of Non-Human Primates.

Study sites, study populations, and sample collection

The study sites were two Pan African Sanctuary Alliance member chimpanzee sanctuaries: A)

TCRC and B) NICS (Fig 1). TCRC is located approximately 30km north of Pointe-Noire,

Republic of Congo, in the Tchimpounga Nature Reserve, and cares for approximately 150

chimpanzees. NICS is located on Ngamba Island in Lake Victoria, Uganda, and cares for

approximately 52 chimpanzees. After rescue, arrival at the sanctuaries, and rehabilitation,

chimpanzees are integrated into social groups that semi-free range in forested enclosures dur-

ing the day and stay in enclosed dens at night. At both sites, chimpanzees are provisioned with

a variety of species-appropriate fruits, vegetables, and other foods multiple times per day, but

the sanctuary chimpanzees are also able to forage within their forest enclosures.

At TCRC, we analyzed saliva from 1 sanctuary-born and 22 wild-born chimpanzees (11

females and 12 males, ages 7–31 years old) that was collected between July 4th and July 24th,

2019. At NICS, we analyzed saliva from 24 wild-born chimpanzees (13 females and 11 males,

ages 7–30 years old) that was collected between July 29th and August 14th, 2016. Saliva samples

were collected by researchers from chimpanzees who voluntarily allowed their mouth to be

swabbed as in previous studies, following the same protocols [49–51]. To do so, the researchers

first thoroughly washed their hands and then poured ground SweeTARTS (Ferrera Candy

Company, Chicago, IL, USA) powder onto a cotton round. While holding the chimpanzee’s

bottom lip through the wire mesh enclosure, the cotton round was placed between the bottom

lip and gums to absorb saliva. To minimize sample contamination, saliva was not collected

from chimpanzees during provisioning periods (e.g., in the morning before breakfast at NICS,

and either before breakfast or at least a half hour after feeding at TCRC), from chimpanzees

who were observed eating anything remaining from prior feeding periods, or from chimpan-

zees who had visible cuts or other potential contamination sources in their mouths. After

becoming saturated with saliva, a process that typically took 2–3 minutes and no more than 5

minutes, the cotton round was placed into a 10-mL syringe and the plunger was used to expel

the saliva into a 1.2 mL cryogenic vial (Fisher Scientific, Waltham, MA, USA). TCRC saliva

PLOS ONE Viruses in sanctuary chimpanzee saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0288007 June 29, 2023 3 / 22

https://doi.org/10.1371/journal.pone.0288007


samples were stored in the field in a cooler with ice packs and moved to a -20˚C freezer within

two hours. NICS saliva samples were frozen immediately in liquid nitrogen. All samples were

kept frozen during shipment to the USA and were then stored at −80˚C until processing.

Sample preparation and sequencing

Following previously described methods optimized for virus detection in chimpanzee blood,

feces, and respiratory swabs [4, 26, 45, 52–54], saliva samples were subject to metagenomic

next-generation sequencing. First, we added 125ul of saliva to 125ul of Hank’s Balanced Salt

Solution (MilliporeSigma, Burlington, MA, USA), and the mixture was homogenized by bead

beating and clarified by centrifugation. After nuclease digestion [55], we extracted nucleic

acids using the QIAmp MinElute Virus Spin Kit (Qiagen, Hilden, Germany). We synthesized

double-stranded cDNA using the SuperScript double-stranded cDNA Synthesis Kit (Invitro-

gen, Carlsbad, CA, USA). We purified the cDNA using AmpureXP beads (Beckman Coulter,

Brea, CA, USA) and prepared DNA libraries using the Nextera XT DNA sample preparation

kit (Illumina, San Diego, CA, USA). DNA libraries were sequenced on a MiSeq instrument

(MiSeq Reagent Kit, V2 chemistry, 300 cycle kit; Illumina).

Virus identification

We trimmed and prepared sequencing data using CLC Genomics Workbench v. 20.0.4 (Qiagen)

as previously described [26]. First, we trimmed reads of low quality (Phred quality score<30)

Fig 1. Map of study sites. (A) Tchimpounga Chimpanzee Rehabilitation Centre (TCRC) in Republic of Congo

(purple) and (B) Ngamba Island Chimpanzee Sanctuary (NICS) in Uganda (blue). Map created using R v. 4.2.0 with

Natural Earth (R Core Team, 2022).

https://doi.org/10.1371/journal.pone.0288007.g001
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and<50 bases in length. We then filtered out reads mapping to known contaminants and to a

chimpanzee (Pan troglodytes) reference genome (GenBank accession number

GCF_002880755.1). We performed de novo assembly of the remaining reads using SPAdes v.

3.15.2 with the metaSPAdes pipeline [56, 57]. We compared resulting contiguous sequences to

the GenBank database using both the BLASTn (nucleotide) and BLASTx (protein) algorithms to

identify viruses [58, 59]. We retained contigs representing viruses associated with mammalian

hosts for further analyses (i.e., we excluded confirmed bacteriophage and viruses associated with

invertebrates per ICTV reports). We used NOVOplasty to build out circular virus genomes [60].

To quantify viral abundances, we mapped reads from each individual to the sequence of a

target gene (see Table 1 footnote) for each virus at a length fraction of 1.0 and similarity of 0.9

and classified an individual as positive for a virus if it had a normalized read count of� 1 read

per million at a length of� 50 bases matching that virus. To estimate viral relative abundance,

we determined the proportion of reads mapping to each virus and the proportion of reads map-

ping to any virus in the population (total viral abundance). We then normalized this measure to

one million reads and to the length of the target sequence for each virus and applied a log trans-

formation to calculate a metagenomic measure of viral abundance (log10 viral reads per million

per kilobase of target sequence, or log10vRPM/kb) which is correlated with results from quanti-

tative PCR assays [61] and has proven informative in our prior studies of chimpanzee viruses

[26, 45, 52–54]. Complete papillomavirus genomes were annotated using PuMA [62].

Phylogenetics and viral sequence comparisons

To infer phylogenetic relationships, we generated multiple sequence alignments of nucleotide

sequences from the viruses identified in this study and known, related viruses in GenBank

using the T-Coffee algorithm implemented by EMBL-EBI and hand edited the alignments as

needed [63, 64]. We then inferred maximum-likelihood phylogenetic trees using PhyML with

Smart Model Selection and 1000 bootstrap replicates [65, 66]. We displayed resulting phyloge-

netic trees in FigTree v. 1.4.4 [67].

We used MEGA X to calculate genetic distances (nucleotide p-distance ± standard error,

1000 bootstrap replicates) of viruses within and between the two sanctuary populations [68].

To compare the viruses identified in this study to each other and known relatives, we used

Sequence Demarcation Tool v. 1.2 to generate pairwise alignments using the MUSCLE algo-

rithm and calculate pairwise identities for nucleotide and amino acid sequences [69, 70].

Statistical analyses

We conducted statistical analyses using R v. 4.2.0 implemented in R Studio [71, 72]. We calcu-

lated the prevalence of each virus (percentage of positive individuals) with modified Wald 95%

confidence intervals (Agresti & Coull, 1998). We calculated odds ratios with 95% confidence

intervals and performed two-tailed Fisher’s exact tests (‘fisher.test’ in R) to assess the associa-

tion between sex (male or female) and viral infection. We used Mann-Whitney U tests (‘wil-

cox.test’ in R) to assess the association between sex and viral abundance in infected

individuals. We compared viral richness (number of viruses per individual) and total viral

abundance between the two sanctuaries using Mann-Whitney U tests.

Results

Virus characterization

Next-generation sequencing produced an average of 1,533,717 reads per sample

(SD ± 621,460) for TCRC and 1,589,629 (SD ± 203,431) for NICS after filtering for quality and
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length. From these data, we identified 20 viruses of four genome types (ssRNA-RT, dsRNA,

ssDNA, and dsDNA) (Table 1 and Fig 2). We identified 12 of these viruses at TCRC and 11 at

NICS which are 66.5–99.6% similar to their closest match in GenBank based on BLASTn per-

cent identity. All but one of these viruses, an unclassified CRESS (circular rep-encoding single-

stranded) DNA virus identified at TCRC (TCPTV-13), were classified into five viral families:

Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. At least one

virus from each of these families was identified at both sanctuaries. For the families Herpesviri-
dae and Papillomaviridae, viruses from two genera (Cytomegalovirus and Lymphocryptovirus;
Alphapapillomavirus and Gammapapillomavirus) were identified. Detailed pairwise sequence

comparisons between viruses identified in this study and known relatives (S2–S9 Tables) as

well as within- and between-population genetic distances (S10 Table) are provided in the sup-

plementary information.

Simian foamy virus Pan troglodytes troglodytes (Retroviridae: Simiispumavirus; SFVptr)

was identified at TCRC, and simian foamy virus Pan troglodytes schweinfurthii (SFVpsc) was

identified at NICS (Fig 3). The TCRC SFVptr variant shares 96% Bet nucleotide sequence

(NT) identity to known SFVptr variants (JQ867463, JQ867462, AF232917, AF232918) (S2

Table). The NICS SFVpsc variant shares 98% Bet NT identity with known SFVpsc variants

(KX087159, U21247, EU381240).

We identified eight picobirnaviruses (Picobirnaviridae: Orthopicobirnavirus), all of which

clustered phylogenetically in genogroup 1 except TCPTV-7 which clustered in genogroup 2

(S1 Fig). Picobirnavirus diversity within and between the two sanctuaries was similar (S3 and

S10 Tables). Of the cycloviruses (Circoviridae: Cyclovirus) identified in this study (TCPTV-12,

NAPTV-15, ChimpACyV2, NAPTV-17), two contain introns in their replicase genes

(TCPTV-12 and ChimpACyV2), which has been reported for other cycloviruses [73] (S2 Fig

and S4 Table). We identified the complete genome for ChimpACyV2 and NAPTV-17. Chim-

pACyV2 is most closely related to a cyclovirus identified in shrew feces (AB937982; [74]) to

which it shares 75.4% genome-wide NT identity. Based on ICTV guidelines for cyclovirus spe-

cies demarcation (<80% genome-wide NT identity; [73]), ChimpACyV2 represents a novel

species. NAPTV-17 shares 91% genome-wide NT identity with a mongoose associated cyclo-

virus (MZ382573; [75]), a novel species that has not yet been formally classified [76], making

NAPTV-17 a member of this putative species [73]. A single unclassified CRESS DNA virus

(TCPTV-13) was identified at TCRC (S2 Fig and S2 and S5 Tables).

Pan paniscus papillomavirus type 1 (Papillomavirus: Alphapapillomavirus; PpPV1) was

identified at each sanctuary (Fig 4A). The TCRC and NICS PpPV1 variants share 98.6% L1 NT

identity (S6 Table). We also identified a novel alphapapillomavirus, Pan troglodytes papilloma-

virus type 1 (PtroPV1), at both sanctuaries. These variants share 99.9% L1 NT identity.

PtroPV1 is most closely related to human papillomavirus type 177 (KR816168; 85% L1 NT

identity) and represents a novel papillomavirus type based on the papillomavirus type

demarcation threshold (<90% complete L1 NT identity) [77–79]. A single gammapapilloma-

virus (TCPTV-16; Papillomaviridae: Gammapapillomavirus) was identified at TCRC (Fig 4B

and S7 Table).

We identified chimpanzee cytomegalovirus (CCMV) (Herpesviridae: Cytomegalovirus) at

NICS which shares 95% DNA polymerase NT identity to the original CCMV (AF480884) and

81% to human cytomegalovirus (AY446894) (Fig 5A and S8 Table). Lastly, we identified Pan

troglodytes lymphocryptovirus 1 (PtroLCV-1) (Herpesviridae: Lymphocryptovirus) at each

sanctuary (Fig 5B). These variants share 99.8% DNA polymerase NT identity to each other,

99.0% to the original PtroLCV-1 (AF534226), and 92% to Epstein-Barr virus (AJ507799)

(S9 Table).
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Table 1. Viruses in saliva from sanctuary chimpanzees at TCRC and NICS.

ID Virus Name Sanctuary Abbreviation Genome Familya Genusa Closest match

(source, location,

year, accession)b

E-Valueb % ID

(NT)b
Accessionc

1 simian foamy virus

Pan troglodytes

schweinfurthii

NICS SFVpsc ssRNA-RT Retroviridae Simiispumavirus Human foamy virus

(human, Germany,

EU381420)

0 97.95 OP934216

2 simian foamy virus

Pan troglodytes

troglodytes

TCRC SFVptr ssRNA-RT Retroviridae Simiispumavirus Human

spumaretrovirus

(chimpanzee,

AF232918)

0 96.53 OP934220

3 nabpantry virus 12 NICS NAPTV-12 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Picobirnavirus sp.

(human,

Netherlands, 2016,

OK562155)

2.00E-87 66.54 OP934217

4 nabpantry virus 13 NICS NAPTV-13 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Marmot

picobirnavirus

(marmot, China,

2013, KY928684)

0 71.41 OP934218

5 nabpantry virus 14 NICS NAPTV-14 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Porcine

picobirnavirus (pig,

USA, 2018,

MW977424)

0 75.72 OP934219

6 ticpantry virus 7 TCRC TCPTV-7 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Chimpanzee

picobirnavirus

(chimpanzee, Sierra

Leone, 2013–2016,

MT350351)

0 97.96 OP934221

7 ticpantry virus 8 TCRC TCPTV-8 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Picobirnavirus sp.

(cow, 2017–2019,

China, MZ556513)

0 73.46 OP934222

8 ticpantry virus 9 TCRC TCPTV-9 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Porcine

picobirnavirus (pig,

USA, 2018,

MW977506)

0 87.26 OP934223

9 ticpantry virus 10 TCRC TCPTV-10 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Picobirnavirus sp.

(human,

Cameroon, 2014,

MH933806)

0 81.72 OP934224

10 ticpantry virus 11 TCRC TCPTV-11 dsRNA

(segmented)

Picobirnaviridae Orthopicobirnavirus Human

picobirnavirus

(human, USA,

2018, OL875327)

0 89.13 OP934225

11 nabpantry virus 15 NICS NAPTV-15 ssDNA

(circular)

Circoviridae Cyclovirus Cyclovirus

Chimp53

(chimpanzee,

Cameroon, 2003,

GQ404881)

0 95.15 OP934203

12 chimpanzee

associated

cyclovirus 2

NICS ChimpACyV2 ssDNA

(circular)

Circoviridae Cyclovirus Cyclovirus ZM36a

(shrew, Zambia,

2012, AB937982)

0 90.41 OP934204

13 nabpantry virus 17 NICS NAPTV-17 ssDNA

(circular)

Circoviridae Cyclovirus Mongoose-

associated

cyclovirus

(mongoose, Saint

Kitts and Nevis,

2017, MZ382573)

0 93.17 OP934205

14 ticpantry virus 12 TCRC TCPTV-12 ssDNA

(circular)

Circoviridae Cyclovirus Swine cyclovirus

(pig, Cameroon,

2012, KM392285)

0 97.10 OP934208

(Continued)
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Viral prevalence

Overall, viral prevalence ranged from 4.2% to 87.5%. At TCRC, a cyclovirus and PtroPV1 were

the most prevalent (53.3%; 95% confidence interval (CI): 33%, 70.8%). At NICS, PtroLCV-1

was the most prevalent virus (87.5% CI: 68.2%, 96.5%). The least prevalent viruses at TCRC

were the gammapapillomavirus (TCPTV-16) and PpPV1, each infecting one individual (4.3%

CI:<0.01%, 22.7%). At NICS, a cyclovirus (NAPTV-15) was the least prevalent (4.2% CI:

Table 1. (Continued)

ID Virus Name Sanctuary Abbreviation Genome Familya Genusa Closest match

(source, location,

year, accession)b

E-Valueb % ID

(NT)b
Accessionc

15 ticpantry virus 13 TCRC TCPTV-13 ssDNA

(circular)

Unclassified Unclassified Circovirus sp. (pig,

China, 2017,

MK377638)

2.00E-92 70.64 OP934209

16 Pan paniscus

papillomavirus type

1

NICS PpPV1 dsDNA

(circular)

Papillomaviridae Alphapapillomavirus Common

chimpanzee

papillomavirus 1

(chimpanzee,

AF020905)

0 95.94 OP934206

17 Pan troglodytes

papillomavirus type

1

NICS PtroPV1 dsDNA

(circular)

Papillomaviridae Alphapapillomavirus Human

papillomavirus type

177 (human,

KR816168)

0 84.16 OP934207

18 Pan paniscus

papillomavirus type

1

TCRC PpPV1 dsDNA

(circular)

Papillomaviridae Alphapapillomavirus Common

chimpanzee

papillomavirus 1

(chimpanzee,

AF020905)

0 95.39 OP934210

19 Pan troglodytes

papillomavirus type

1

TCRC PtroPV1 dsDNA

(circular)

Papillomaviridae Alphapapillomavirus Human

papillomavirus type

177 (human,

KR816168)

0 84.16 OP934211

20 ticpantry virus 16 TCRC TCPTV-16 dsDNA

(circular)

Papillomaviridae Gammapapillomavirus Human

papillomavirus

(human, USA,

2015, MH777284)

7.00E-

152

78.55 OP934212

21 chimpanzee

cytomegalovirus

NICS CCMV dsDNA

(linear)

Herpesviridae Cytomegalovirus Panine

betaherpesvirus 2

(chimpanzee,

Germany, 2020,

MZ151943)

0 94.12 OP934213

22 Pan troglodytes

lymphocryptovirus

1

NICS PtroLCV-1 dsDNA

(linear)

Herpesviridae Lymphocryptovirus Macaca arctoides

gammaherpesvirus

1 (macaque,

Georgia, 1985,

MG471437)

0 93.47 OP934214

23 Pan troglodytes

lymphocryptovirus

1

TCRC PtroLCV-1 dsDNA

(linear)

Herpesviridae Lymphocryptovirus Pan paniscus

lymphocryptovirus

1 (bonobo,

AF534220)

0 99.56 OP934215

a Determined by phylogenetic analyses. See Figs 3–5 and S1, S2 Figs.
b Closest match, E-value, and percent identity (nucleotide) were identified by querying the target gene (Bet (Retroviridae), polymerase (Picobirnaviridae, Herpesviridae),
Rep (Circoviridae), and L1 (Papillomaviridae)) nucleotide sequences against the NCBI’s nonredundant nucleotide database using the discontiguous megablast homology

searching algorithm. Length of target gene obtained for each virus and genome information is reported in S11 Table.
c GenBank accession number of viral sequence from this study.

https://doi.org/10.1371/journal.pone.0288007.t001
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Fig 2. Prevalence of viruses identified in saliva from chimpanzees at TCRC and NICS. (A) Total number of viruses in each family and genus identified at

TCRC and NICS. Family and genus were determined using phylogenetic analyses (Figs 3–5 and S1, S2 Figs). (B) Barplot displays the proportion (%) of

individuals at each sanctuary who were positive for at least one virus in the family. (C) Barplot displays the proportion of individuals at each sanctuary who

were positive for at least one virus in each identified Papillomaviridae genus. D) Barplot displays the proportion of individuals at each sanctuary who were

positive for a virus in each identified Herpesviridae genus.

https://doi.org/10.1371/journal.pone.0288007.g002

Fig 3. Maximum-likelihood phylogenetic tree of simian foamy virus Bet gene nucleotide sequences. Viruses identified in this study are marked with a

colored star to indicate the sanctuary of origin (purple = TCRC, blue = NICS). Virus names are followed by (host, location, year, GenBank accession number).

Bootstrap values� 50% are represented by numbers beside branches (1000 replicates). Scale bar is equal to nucleotide substitutions per site.

https://doi.org/10.1371/journal.pone.0288007.g003
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<0.01%, 21.9%). Viral prevalence by family and genus is shown in Fig 2. The prevalence of

individual viruses (overall and by sex) is listed in S12 Table. There were no statistically signifi-

cant associations between viral presence and sex.

Viral richness and abundance

Viral richness ranged from 0 to 7 at both sanctuaries (Fig 6A and S13, S14 Tables). The average

viral richness was 2.8 (SD ± 1.8) at TCRC and 3.5 (SD ± 1.5) at NICS. Viral abundance

(log10vRPM/kb) ranged among viruses and individuals from 0 to 4.22 at TCRC and 0 to 3.51

at NICS (Fig 6B, S3 Fig, and S13, S14 Tables). Among infected individuals, the virus with the

highest abundance was NAPTV-15 (1.65), and the virus with the lowest abundance was

Fig 4. Maximum likelihood phylogenetic trees of papillomavirus L1 gene nucleotide sequences. (A) alphapapillomaviruses and (B)

gammapapillomaviruses. Viruses identified in this study are marked with a colored star to indicate the sanctuary of origin (purple = TCRC, blue = NICS).

Virus names are followed by (host, location, year, GenBank accession number). Bootstrap values� 50% are represented by numbers beside branches (1000

replicates). Scale bar is equal to nucleotide substitutions per site.

https://doi.org/10.1371/journal.pone.0288007.g004
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NAPTV-17 (0.62), both cycloviruses. Total viral abundance (all viruses combined) was on

average 0.63 (SD ± 0.7) at TCRC and 0.97 (SD ± 0.8), reaching a maximum of 3.23 at TCRC

and 2.8 at NICS. We compared the distribution viral richness and total viral abundance at

TCRC and NICS and did not observe a statistically significant difference (p-values: viral rich-

ness 0.19 and total viral abundance 0.07). For each sample, the number of sequencing reads

mapping to each virus is reported in S15, S16 Tables.

Fig 5. Maximum likelihood phylogenetic trees of herpesvirus DNA polymerase catalytic subunit gene nucleotide sequences. (A) cytomegaloviruses and

(B) lymphocryptoviruses. Viruses identified in this study are marked with a colored star to indicate the sanctuary of origin (purple = TCRC, blue = NICS).

Virus names are followed by (host, location, year, GenBank accession number). Bootstrap values� 50% are represented by numbers beside branches (1000

replicates). Scale bar is equal to nucleotide substitutions per site.

https://doi.org/10.1371/journal.pone.0288007.g005

Fig 6. Boxplots of (A) viral richness and (B) total viral abundance for TCRC and NICS chimpanzees. Mann-Whitney U test comparisons

between TCRC and NICS populations were not statistically significant (ns).

https://doi.org/10.1371/journal.pone.0288007.g006
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Discussion

We identified a total of 20 viruses in saliva samples from two populations of wild-born, sanctu-

ary-housed chimpanzees in Africa. Of the viruses identified, none are known to cause disease

in chimpanzees or humans. Chimpanzees at these two sanctuaries were infected with viruses

from the same families and genera including highly similar variants of two papillomaviruses

and a herpesvirus (i.e., PpPV1, PtroPV1, and PtroLCV-1). With the exception of papillomavi-

ruses, all types of viruses identified in this study have been documented previously in fecal

samples from wild chimpanzees [48, 52, 53, 80–82]. Additionally, herpesviruses and SFV have

been detected in tissues from deceased wild chimpanzees [83–87].

NHPs of many species are persistently infected with SFVs, which replicate in the superficial

epithelial cells of the oral mucosa but do not cause known pathology [44, 88, 89]. Herpesvi-

ruses, also ubiquitous, naturally establish persistent, latent infections in primates and are inter-

mittently shed in saliva [90, 91]. Several human herpesviruses (e.g., Epstein-Barr virus, human

cytomegalovirus) are opportunistic pathogens, particularly in immunocompromised individu-

als [92, 93]. Mountain gorilla lymphocryptovirus has been associated with Epstein-Barr virus-

like (human lymphocryptovirus) pathology in infant mountain gorillas [91]. Epstein-Barr

virus-like pathology has not been documented for chimpanzees infected with PtroLCV-1. The

true hosts of CRESS DNA viruses, including cycloviruses [73, 75, 76, 94], and picobirnaviruses

[95, 96] are unknown, although arthropods and bacteria or fungi, respectively, are suspected.

Thus, these viruses, neither of which are considered pathogenic, may actually represent dietary

or environmental contaminants and not viral infection in chimpanzees [76, 95, 97, 98].

Papillomavirus infections can be persistent or transient and are usually asymptomatic or

cause mild disease. Papillomaviruses have been detected in healthy skin swabs from zoo-

housed chimpanzees and in oral cavity samples from laboratory-housed chimpanzees exhibit-

ing focal epithelial hyperplasia [35, 99]. Previously, vaginal swabs from chimpanzees at NICS

were tested for papillomaviruses using PCR, which yielded negative results [100]. Some papil-

lomavirus types do cause disease (e.g., cervical cancer in humans and macaques) [101–103].

However, PpPV1 and PtroPV1 are distantly related to the carcinogenic human papillomavirus

types, 16 and 18 (K02718 and X05015; 69–75% L1 NT identity; S6 Table) [104, 105]. In fact,

PpPV1 clusters phylogenetically with members of the species Alphapapillomavirus 10 which

are associated with benign oral conditions such as focal epithelial hyperplasia in humans,

chimpanzees, and bonobos [34–36, 77]. PtroPV1, the novel alphapapillomavirus identified in

this study, is most closely related to human papillomaviruses of species Alphapapillomavirus
11 including human papillomavirus type 73 which is classified as possibly carcinogenic to

humans [105, 106].

Zoonotic transmission of SFVs has been documented both in the wild and in captivity [11,

14, 15, 47, 107, 108], but infections have not been shown to be pathogenic in the human host

[88]. The SFVs detected in this study cluster phylogenetically with known SFV variants from

central chimpanzees (P. t. troglodytes, SFVptr) and eastern chimpanzees (P. t. schweinfurthii,
SFVpsc), consistent with virus-host co-speciation [109]. Herpesviruses are generally consid-

ered host-specific; however, the ability for cross-species transmission of herpesviruses between

humans and NHPs is known for members of the subfamily Alphaherpesvirinae (i.e., herpes B

virus, herpes simplex virus) [20, 110]. In contrast, transmission of cytomegaloviruses and lym-

phocryptoviruses between primates of different species (including humans) has not been doc-

umented, even where exposure would be high, such as in a chimpanzee and colobus monkey

predator-prey system in the wild [81, 110–113]. Like most herpesviruses, papillomaviruses also

demonstrate host-specificity [79]. Zoonotic transmission of papillomaviruses between chim-

panzees and humans has not been reported.
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Overall, our findings show that the sanctuary chimpanzees we analyzed are shedding

viruses in their saliva that are known to replicate in the oral cavity but, to our knowledge, do

not pose a risk to chimpanzee or human health. This conclusion is important because frequent

contact between sanctuary apes and human staff has been an ongoing concern for sanctuary

management [6]. Surveys of NHP workers in field, laboratory, zoo, or sanctuary settings have

reported NHP bites in ~40% of workers [114, 115]. Contact with chimpanzee oral fluids could

also occur during feeding, cleaning of enclosures, and especially during intensive rehabilitation

of newly rescued individuals. Fortunately, our results suggest that the likelihood of sanctuary

personnel acquiring pathogenic viral infections from chimpanzee saliva is low, at least in the

sanctuaries we studied. Nevertheless, measures to minimize this risk should be taken particu-

larly when viral infection status of sanctuary chimpanzees is unknown, which is often the case,

and to avoid other sequelae (e.g., bacterial infection from bites [10]).

We emphasize that our results are specific to viruses in saliva, which may not reflect

viruses in other body compartments. For example, we previously described viruses in

plasma from TCRC and NICS chimpanzees (from primarily different individuals at TCRC

but the same individuals at NICS) [27], but no viruses identified in this previous study of

plasma were found in the present study of saliva (distinct picobirnaviruses were identified

in both sample types) (S17 Table). We did, however, detect PtroLCV-1 at NICS, which has

been previously detected in the blood buffy coat of these chimpanzees, but we did not detect

herpesviruses in the genus Rhadinovirus which have also been previously detected at NICS

[116]. Given that we detected other herpesviruses in this study, we suspect that the latter dif-

ference is due to intermittent shedding of herpesviruses in saliva [117, 118]. Likewise, SFV

has also been detected in chimpanzees at NICS using buffy coat from blood [6]. Our results

share little overlap with prior work using fecal samples from sanctuary chimpanzees to

detect viruses which have primarily utilized virus-specific diagnostics (i.e., PCR). Notably,

PtroLCV-1 was detected at lower prevalence in feces (3/21; 14.3%) [119] from NICS chim-

panzees than in buffy coat (14/40; 35%) [116] or here in saliva (21/24; 87.5%). Lastly, we rec-

ognize that we are unable to comment on the infectivity and transmissibility of the viruses

identified in this study as our methods do not distinguish between viral nucleic acids and

infectious viruses [61].

Non-invasive saliva sampling has been utilized, albeit infrequently in comparison to fecal

samples, to assess the health of wild chimpanzee populations. In wild western chimpanzees (P.

t. verus), saliva collected non-invasively from food wadges has been used to detect Staphylococ-
cus and Streptococcus spp. and monkeypox virus [40, 120–122]. Chewed ropes and vegetation

have been used to detect herpesviruses and SFVs in saliva from wild mountain gorillas, olive

baboons (Papio anubis), rhesus macaques (M. mulatta), and golden monkeys (Cercopithecus
kandti) [23, 41, 91, 123]. Flavored chew swabs have been utilized to detect Mycobacterium
tuberculosis in free-ranging macaques [124]. Our results suggest that metagenomic methods

might be beneficial if combined with these or similar collection methods.

NHP sanctuary managers are faced with the need to develop long-term solutions to balance

ongoing demand for care and capacity limits [125, 126]. In light of this, our findings add to

prior studies that have shown that wild-born chimpanzees housed at sanctuaries appear

broadly healthy with respect to viral infections [27], cardiovascular [127], endocrine [49, 51],

and psychological health [51], in some ways similar to wild populations. We envision that our

methods could be used to screen newly rescued individuals for viral pathogens upon arrival at

a sanctuary, to prevent the introduction of orally transmitted pathogens, and to make deci-

sions about husbandry and management of infected individuals, including decisions about

relocation and reintroduction [24, 128].
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Supporting information

S1 Fig. Maximum-likelihood phylogenetic tree of picobirnavirus RNA dependent RNA

polymerase gene nucleotide sequences. Viruses identified in this study are marked with a col-

ored star to indicate the sanctuary of origin (purple = TCRC, blue = NICS). Virus names are

followed by (host, location, year, GenBank accession number). Bootstrap values (%)� 50 are

represented by numbers beside branches (1000 replicates). Scale bar is equal to nucleotide sub-

stitutions per site.

(TIF)

S2 Fig. Maximum-likelihood phylogenetic trees of cyclovirus and unclassified CRESS

DNA virus replicase gene nucleotide sequences. Viruses identified in this study are marked

with a colored star to indicate the sanctuary of origin (purple = TCRC, blue = NICS). Virus

names are followed by (host, location, year, GenBank accession number). Bootstrap values (%)

� 50 are represented by numbers beside branches (1000 replicates). Scale bar is equal to nucle-

otide substitutions per site.

(TIF)

S3 Fig. Heatmap of saliva viral abundance of sanctuary chimpanzees at TCRC and NICS.

Displays viral abundance data (log10vRPM/kb) for each genus and total viral abundance data

(log10vRPM/kb for all viruses) for each individual at each sanctuary. Values range from 0

(lightest) to 4.22 (darkest). a Genus refers to Table 1 and Fig 2. b For individuals infected with

more than one virus from a genus, the average viral abundance is shown.

(TIF)

S1 Table. Detailed sample inventory.

(XLSX)

S2 Table. Pairwise sequence comparisons of simian foamy viruses.

(XLSX)

S3 Table. Pairwise sequence comparisons of picobirnaviruses.

(XLSX)

S4 Table. Pairwise sequence comparisons of cycloviruses.
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S5 Table. Pairwise sequence comparisons of CRESS DNA viruses.
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S6 Table. Pairwise sequence comparisons of alphapapillomaviruses.
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S7 Table. Pairwise sequence comparisons of gammapapillomaviruses.
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S8 Table. Pairwise sequence comparisons of cytomegaloviruses.
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S9 Table. Pairwise sequence comparisons of lymphocryptoviruses.
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S10 Table. Within- and between-population (sanctuary) genetic distances of viruses identi-

fied in this study.
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87. Prepens S, Kreuzer KA, Leendertz F, Nitsche A, Ehlers B. Discovery of herpesviruses in multi-infected

primates using locked nucleic acids (LNA) and a bigenic PCR approach. Virol J. 2007 Sep 6; 4:84.

https://doi.org/10.1186/1743-422X-4-84 PMID: 17822523

88. Coffin J, Blomberg J, Fan H, Gifford R, Hatziioannou T, Lindemann D, et al. ICTV virus taxonomy pro-

file: Retroviridae 2021. J Gen Virol. 2021 Dec 23; 102(12). https://doi.org/10.1099/jgv.0.001712 PMID:

34939563

89. Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, et al. Spumaretroviruses: Updated

taxonomy and nomenclature. Virology. 2018 Mar 1; 516:158–64. https://doi.org/10.1016/j.virol.2017.

12.035 PMID: 29407373

90. Eberle R, Jones-Engel L. Understanding primate herpesviruses. J Emerg Dis Virol. 2017 Mar; 3(1):

https://doi.org/10.16966/2473-1846.127 PMID: 29607423

91. Smiley Evans T, Lowenstine LJ, Gilardi KV, Barry PA, Ssebide BJ, Kinani JF, et al. Mountain gorilla

lymphocryptovirus has Epstein-Barr virus-like epidemiology and pathology in infants. Sci Rep. 2017

Jul 13; 7:5352. https://doi.org/10.1038/s41598-017-04877-1 PMID: 28706209

92. Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: biology and clinical disease. Cell. 2022

Sep 29;185. https://doi.org/10.1016/j.cell.2022.08.026 PMID: 36113467

93. Gatherer D, Depledge DP, Hartley CA, Szpara ML, Vaz PK, BenkőM, et al. ICTV virus taxonomy pro-

file: Herpesviridae 2021. J Gen Virol. 2021 Oct; 102. https://doi.org/10.1099/jgv.0.001673 PMID:

34704922

94. Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E, Rosario K, et al. Cressdnaviricota: a

virus phylum unifying seven families of rep-encoding viruses with single-stranded, circular DNA

genomes. J Virol. 2020 Jun; 94(12):e00582–20. https://doi.org/10.1128/JVI.00582-20 PMID:

32269128

95. Delmas B, Attoui H, Ghosh S, Malik YS, Mundt E, Vakharia VN, et al. ICTV virus taxonomy profile:

Picobirnaviridae. J Gen Virol. 2019 Feb; 100(2):133–4. https://doi.org/10.1099/jgv.0.001186 PMID:

30484763

96. Ghosh S, Malik YS. The true host/s of picobirnaviruses. Front Vet Sci. 2021; 7:615293. https://doi.org/

10.3389/fvets.2020.615293 PMID: 33553283

97. Gainor K, Malik YS, Ghosh S. Novel cyclovirus species in dogs with hemorrhagic gastroenteritis.

Viruses. 2021 Oct 26; 13:2155. https://doi.org/10.3390/v13112155 PMID: 34834961

98. Wang D. The enigma of picobirnaviruses: viruses of animals, fungi, or bacteria? Curr Opin Virol. 2022

Jun; 54:101232. https://doi.org/10.1016/j.coviro.2022.101232 PMID: 35644066

99. Antonsson A, Hansson BG. Healthy skin of many animal species harbors papillomaviruses which are

closely related to their human counterparts. J Virol. 2002 Dec; 76(24):12537–42. https://doi.org/10.

1128/jvi.76.24.12537-12542.2002 PMID: 12438579

100. Rushmore J, Allison AB, Edwards EE, Bagal U, Altizer S, Cranfield MR, et al. Screening wild and

semi-free ranging great apes for putative sexually transmitted diseases: evidence of Trichomonadidae

infections. Am J Primatol. 2015; 77(10):1075–85. https://doi.org/10.1002/ajp.22442 PMID: 26119266

PLOS ONE Viruses in sanctuary chimpanzee saliva

PLOS ONE | https://doi.org/10.1371/journal.pone.0288007 June 29, 2023 20 / 22

https://doi.org/10.1128/JVI.02109-09
http://www.ncbi.nlm.nih.gov/pubmed/20007276
https://doi.org/10.1093/ve/vez015
https://doi.org/10.1093/ve/vez015
http://www.ncbi.nlm.nih.gov/pubmed/31384482
https://doi.org/10.1371/journal.pone.0118543
http://www.ncbi.nlm.nih.gov/pubmed/25781992
https://doi.org/10.1128/jvi.77.19.10695-10699.2003
https://doi.org/10.1128/jvi.77.19.10695-10699.2003
http://www.ncbi.nlm.nih.gov/pubmed/12970457
https://doi.org/10.1007/s10329-013-0372-4
https://doi.org/10.1007/s10329-013-0372-4
http://www.ncbi.nlm.nih.gov/pubmed/23872909
https://doi.org/10.1186/1743-422X-4-84
http://www.ncbi.nlm.nih.gov/pubmed/17822523
https://doi.org/10.1099/jgv.0.001712
http://www.ncbi.nlm.nih.gov/pubmed/34939563
https://doi.org/10.1016/j.virol.2017.12.035
https://doi.org/10.1016/j.virol.2017.12.035
http://www.ncbi.nlm.nih.gov/pubmed/29407373
https://doi.org/10.16966/2473-1846.127
http://www.ncbi.nlm.nih.gov/pubmed/29607423
https://doi.org/10.1038/s41598-017-04877-1
http://www.ncbi.nlm.nih.gov/pubmed/28706209
https://doi.org/10.1016/j.cell.2022.08.026
http://www.ncbi.nlm.nih.gov/pubmed/36113467
https://doi.org/10.1099/jgv.0.001673
http://www.ncbi.nlm.nih.gov/pubmed/34704922
https://doi.org/10.1128/JVI.00582-20
http://www.ncbi.nlm.nih.gov/pubmed/32269128
https://doi.org/10.1099/jgv.0.001186
http://www.ncbi.nlm.nih.gov/pubmed/30484763
https://doi.org/10.3389/fvets.2020.615293
https://doi.org/10.3389/fvets.2020.615293
http://www.ncbi.nlm.nih.gov/pubmed/33553283
https://doi.org/10.3390/v13112155
http://www.ncbi.nlm.nih.gov/pubmed/34834961
https://doi.org/10.1016/j.coviro.2022.101232
http://www.ncbi.nlm.nih.gov/pubmed/35644066
https://doi.org/10.1128/jvi.76.24.12537-12542.2002
https://doi.org/10.1128/jvi.76.24.12537-12542.2002
http://www.ncbi.nlm.nih.gov/pubmed/12438579
https://doi.org/10.1002/ajp.22442
http://www.ncbi.nlm.nih.gov/pubmed/26119266
https://doi.org/10.1371/journal.pone.0288007


101. Chen Z, Long T, Wong PY, Ho WCS, Burk RD, Chan PKS. Non-human primate papillomaviruses

share similar evolutionary histories and niche adaptation as the human counterparts. Front Microbiol.

2019; 10:2093. https://doi.org/10.3389/fmicb.2019.02093 PMID: 31552003

102. McBride AA. Mechanisms and strategies of papillomavirus replication. Biol Chem. 2017 Aug 1; 398

(8):919–27. https://doi.org/10.1515/hsz-2017-0113 PMID: 28315855

103. Van Doorslaer K, Chen Z, Bernard HU, Chan PKS, DeSalle R, Dillner J, et al. ICTV virus taxonomy

profile: Papillomaviridae. J Gen Virol. 2018; 99:989–90. https://doi.org/10.1099/jgv.0.001105 PMID:

29927370

104. Banura C, Mirembe FM, Katahoire AR, Namujju PB, Mbonye AK, Wabwire FM. Epidemiology of HPV

genotypes in Uganda and the role of the current preventive vaccines: a systematic review. Infect

Agent Cancer. 2011 Jul 12; 6:11. https://doi.org/10.1186/1750-9378-6-11 PMID: 21749691

105. IARC. Human papillomaviruses. In: IARC Monographs on the Evaluation of Carcinogenic Risks to

Humans. Lyon, France: International Agency for Research on Cancer; 2012. (Biological Agents).

106. Shea S, Muñoz M, Ward SC, Beasley MB, Gitman MR, Nowak MD, et al. Human papillomavirus

(HPV69/HPV73) coinfection associated with simultaneous squamous cell carcinoma of the anus and

presumed lung metastasis. Viruses. 2020 Mar 22; 12:349. https://doi.org/10.3390/v12030349 PMID:

32235715

107. Betsem E, Rua R, Tortevoye P, Froment A, Gessain A. Frequent and recent human acquisition of sim-

ian foamy viruses through apes’ bites in Central Africa. PLoS Pathog. 2011 Oct 27; 7(10):e1002306.

https://doi.org/10.1371/journal.ppat.1002306 PMID: 22046126

108. Rua R, Betsem E, Calattini S, Saib A, Gessain A. Genetic characterization of simian foamy viruses

infecting humans. J Virol. 2012 Dec; 86(24):13350–9. https://doi.org/10.1128/JVI.01715-12 PMID:

23015714

109. Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, et al. Ancient co-speciation of

simian foamy viruses and primates. Nature. 2005 Mar 17; 434(7031):376–80. https://doi.org/10.1038/

nature03341 PMID: 15772660

110. Murthy S, Couacy-Hymann E, Metzger S, Nowak K, De Nys H, Boesch C, et al. Absence of frequent

herpesvirus transmission in a nonhuman primate predator-prey system in the wild. J Virol. 2013 Oct;

87(19):10651–9. https://doi.org/10.1128/JVI.01104-13 PMID: 23885068

111. Cagliani R, Forni D, Mozzi A, Sironi M. Evolution and genetic diversity of primate cytomegaloviruses.

Microorganisms. 2020 May; 8(5):1–17. https://doi.org/10.3390/microorganisms8050624 PMID:

32344906
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