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Climate change affects the behavior, physiology and life history of many Arctic wildlife species. It can also influence the
distribution and ecology of infectious agents. The southern Beaufort Sea (SB) subpopulation of polar bears (Ursus maritimus)
has experienced dramatic behavioral changes due to retreating sea ice and other climate-related factors, but the effects
of these changes on physiology and infection remain poorly understood. Using serum from polar bears sampled between
2004 and 2015 and metagenomic DNA sequencing, we identified 48 viruses, all of the family Anelloviridae. Anelloviruses are
small, ubiquitous infectious agents with circular single-stranded DNA genomes that are not known to cause disease but, in
humans, covary in diversity and load with immunological compromise. We therefore examined the usefulness of anelloviruses
as biomarkers of polar bear physiological stress related to climate and habitat use. Polar bear anelloviruses sorted into two
distinct clades on a phylogenetic tree, both of which also contained anelloviruses of giant pandas (Ailuropoda melanoleuca),
another ursid. Neither anellovirus diversity nor load were associated with any demographic variables, behavioral factors or
direct physiological measures. However, pairwise genetic distances between anelloviruses were positively correlated with
pairwise differences in sampling date, suggesting that the polar bear “anellome” is evolving over time. These findings suggest
thatanelloviruses are not a sensitive indicator of polar physiological stress, but they do provide a baseline for evaluating future
changes to polar bear viromes.
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Introduction

Host-associated microbiota, including bacteria, fungi, protists
and viruses, play an important role in health by influencing
physiological processes. In some cases, microbiota compo-
sition can alter susceptibility to infectious disease through
the presence or absence of specific microorganisms (Herndn-
dez-Goémez, 2020), yet baseline characterization of wildlife
microbiomes is often lacking (Smith et al., 2009; Stephen
et al., 2019; Watson et al., 2019). Like other microbiota,
viruses may be mutualistic, commensal or parasitic (Trevelline
et al., 2019; Plyusnin et al., 2020; Zhu et al., 2021); however,
viruses are more likely than other classes of microbes to
emerge and cause epidemics in wildlife populations (Dobson
and Foufopoulos, 2001). Climate change is affecting viral
disease emergence risk through the behavior and physiology
of wildlife hosts and vectors (Caminade et al., 2019; Baker
et al., 2022; Carlson er al., 2022). These effects are particu-
larly important for threatened or endangered wildlife popula-
tions (Le Roux and McGeoch, 2008; Moore and Huntington,
2008; Thomas, 2010).

The Arctic is experiencing the effects of global warming at
a significantly faster rate than other regions of the world
(Cohen et al., 2014; IPCC, 2018; DeRepentigny et al.,
2020). The warming climate has led to changes in the
behavior and life history for many Arctic wildlife, including
polar bears (Ursus maritimus). For the southern Beaufort
Sea (SB) subpopulation of polar bears, loss of sea ice habitat
has been associated with changes in abundance (Bromaghin
et al., 2015, 2021), recruitment (Rode et al., 2010), habitat
use (Atwood ef al., 2016b; Rode et al., 2022), physiology
(Pagano et al.,2020; Fry et al., 2019, 2023), diet and toxicant
load (Atwood et al., 2016a; McKinney et al., 2017; Bourque
et al., 2018; Watson et al., 2021) and bacterial microbiome
diversity (Watson et al., 2019). Yet, little is known about
the pathogens of polar bears. A review of infectious agents
in polar bears reported exposure to viral pathogens but did
not look for active infection (Fagre er al., 2015). Serological
studies have revealed exposure of wild polar bears to canine
morbillivirus (Philippa e al., 2004), phocine morbillivirus
and dolphin morbillivirus (Cattet et al., 2004; Philippa et al.,
2004; Kirk et al., 2010), calicivirus (Tryland ez al., 2005),
dolphin rhabdovirus (Philippa ez al., 2004), canine adenovirus
(Philippa et al., 2004) and a single report of rabies virus
(Taylor et al., 1991), but no viral DNA was identified from
wild polar bears. Viruses have been identified in captive
polar bears either serologically or through health effects and
pathology, including West Nile Virus (Dutton ez al., 2009) and
herpesviruses (e.g. equine herpesvirus-1, equine herpesvirus-
9, suid herpes virus-1) (Greenwood et al., 2012).

A 14-year epizootic of alopecia syndrome in SB polar bears
described by Atwood et al. (2015), led to a broad investigation
into its etiology that included the analysis of skin, feces, nasal,
oral and rectal swabs, as well as pathogens in blood (USGS
unpublished data.). Next-generation sequencing to look for
viruses in affected polar bears revealed no causative viruses
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for the alopecia syndrome but did reveal the presence of
viruses of the family Amnelloviridae in the serum of polar
bears. Anelloviruses are small (1.6-3.9 kb), single-stranded
circular DNA viruses with two main open reading frames
(ORFs), with the largest, ORF 1, encoding the capsid protein
(Varsani et al., 2021). These small, highly genetically diverse
viruses appear to be commensal and omnipresent in humans
(Kaczorowska and van der Hoek, 2020; Arze et al., 2021).
Human anelloviruses (also known as “torque teno viruses,”
or TTVs) infect healthy individuals, occur at high prevalence
and may be the most abundant eukaryotic virus in the
human virome (Virgin et al., 2009). Anelloviruses have also
been identified in wildlife species, including non-human
primates (Romeo et al., 2000), a number of felids (Kraberger
et al., 2021), palm civets (Paguma larvata; Nishizawa
et al., 2018), bats, rodents, marsupials (de Souza et al.,
2018) and marine mammals, such as Pacific harbor seals
(Phoca vitulina richardsii; Ng et al., 2011), fur seals
(Arctocephalus gazella; Crane et al., 2018), California sea
lions (Zalophus californianus; Ng et al., 2009), Weddell seals
(Leptonychotes weddellii) and Risso’s dolphins (Grampus
griseus; Fahsbender ez al., 2017). In nearly every described
instance, individuals appear to be infected with multiple
anelloviruses. See Varsani er al. (2021) for a complete list
of known mammalian hosts. Anelloviruses have not been
shown to cause disease. In humans, anelloviruses appear
to be an infectious biomarker of immunological function,
with diversity and load increasing with immune system
suppression (Thom and Petrik, 2007; Spandole ef al., 20135),
although the mechanisms for infection and replication remain
unknown because no cell culture system nor animal model
has been identified (Nasser et al., 2009; Kaczorowska and
van der Hoek, 2020).

Our goal was to characterize the serum virome, includ-
ing anellovirus diversity and load, of SB polar bears, using
samples collected over 11 years with measurable climate
driven changes in the Arctic. We were especially interested
in evaluating whether infection and viral load covaried with
demographic and physiologic factors, including blood-based
measures of immune function and physiological stress, as well
as habitat use driven by climate change. We hypothesized
that viral richness and viral load would increase in polar
bears using on-shore summer habitats. If viruses, specifi-
cally anelloviruses, covaried with demographic, physiological
or behavioral factors, they could represent a novel ecoim-
munological tool for monitoring polar bear populations for
immunological “health.”

Methods

We examined serum samples from 24 unique polar bears
collected as part of ongoing population monitoring studies by
the US Geological Survey (Table 1). Polar bears were captured
on land and on the sea ice of Alaska’s southern Beaufort
Sea (USA) from 2004 to 2015 (Figure 1). Briefly, helicopters
were used to locate polar bears, which were chemically
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Table 1: Summary of demography, anellovirus richness and total anellovirus load for 24 polar bears from the Southern Beaufort Sea

Subpopulation

immobilized. Physical examination found the bears to be
free of obvious signs of injury or disease. They were then
weighed (kg), marked and age was determined using visual
measures and dental analyses (see Atwood et al., 2016b).
Blood samples were collected by venipuncture of the femoral
vein evacuated into plain tubes (Vacutainer; BD Biosciences,
Franklin Lanes, NJ) and stored to prevent freezing. Serum was
separated by centrifugation at 1500xg for 5 min (TRIAC,
Clay Adams, Parsippany, NJ), frozen at —20°C immediately,
then transferred to —80°C for long term storage. All
animal research was conducted under appropriate permits,
including animal care and use approvals (Marine Mammal
Research Permit MA690038-17 and USGS multi-year IACUC
approvals up to 2014-17).

We identified viruses in the serum of polar bears following
previously described methods (Sibley et al., 2016; Bennett
et al., 2020; Campbell et al., 2022). Briefly, we centrifuged

Age (years) Summer Habitat
Use

Total Anellovirus load

Anellovirus
i (log1o VRPM/kb)

Richness

polar bear serum for 10 minutes at 10,000 x g to pellet cellular
debris, and total nucleic acids were extracted from 200 ul
of supernatant using the QIAmp MinElute Virus Spin Kit
(Qiagen, Hilden, Germany). We used the Superscript IV sys-
tem (Thermo Fisher, Waltham, MA) with random hexamers
to reverse transcribe RNA to ¢DNA, and prepared cDNA
libraries using the Nextera XT DNA sample preparation
kit (Illumina, San Diego, CA, USA). We sequenced libraries
on a MiSeq instrument using 150 x 150 cycle V2 paired-
end sequencing chemistry (Illumina), and sequencing adapters
were removed from the resulting reads by on-board Illumina
processing software.

We analysed viral sequences using CLC Genomics Work-
bench v. 20.0.4 (QIAGEN, Aarhus, Denmark) trimming low-
quality bases (Phred quality score < 30), discarding short
reads (<75 bp) and subjecting the remaining reads to de novo
assembly using the CLC assembler with automatic word and
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Figure 1: Study area and capture location of the 24 polar bears included in this study from the Southern Beaufort Sea subpopulation in

northern Alaska, 2004-2015.

bubble size selection and a minimum contiguous sequence
(contig) length of 500. We analysed contigs for nucleotide-
(blastn) and protein-level (blastx) similarity to known viruses
in GenBank. For blastx, we applied the BLASTX algorithm
with the BLOSUM62 matrix to sequences translated into all
6 frames. We analysed all sequence data at the individual read
level by mapping reads to viruses in the GenBank database
using the CLC mapping tool at low stringency (length fraction
of 0.5, similarity fraction of 0.6). We disregarded contigs
matching viruses of known non-mammalian hosts (e.g. bac-
teria, invertebrates, plants, fungi), then mapped reads back to
viral contigs to calculate the proportion of reads mapping to
each virus (for virus-specific load) or the proportion of reads
mapping to any virus (for total viral load). We normalized
these measures for sequencing depth and target sequence
length, expressing viral loads as logy¢ viral reads per million
per kilobase of target (logig vRPM/kb), which has been
shown to correlate with quantitative real-time polymerase
chain reaction data (Toohey-Kurth et al., 2017).

Phylogenetic relationships among viruses were inferred
from ORF 1 nucleotide sequences. We first aligned sequences
of newly identified viruses with published sequences of related
viruses in the GenBank database using the Prank algorithm
(Loytynoja, 2014) in TranslatorX (Abascal et al., 2010), with
the Gblocks algorithm (Castresana, 2000) to remove poorly
aligned regions. We inferred maximum-likelihood phyloge-

netic trees from the alignments using PhyML 3.0 with smart
model selection (Lefort ez al., 2017) and 1000 bootstrap repli-
cates to assess statistical confidence in clades. We used Figtree
v. 1.4.4 to display final phylogenetic tree (Rambaut, 2018).

We assessed whether viral richness (number of viruses in
each bear) and total viral load (log 1ovRPM/kb) were related
to demographic characteristics (sex, age (years), ageksex
and capture year) and physiologic biomarkers of immune
function. We included two markers of immune function:
globulin, a protein that bridges the adaptive and innate
immune response and leukocyte count, a measure of the
innate immune response. Globulin levels were generated
from the comprehensive diagnostic panel for the VetScan VS2
biochemistry analyser (Abaxis, Union City, California) and
leukocytes were counted using an HMS bioanalyser (Abaxis,
Union City, CA). see Fry et al., 2019 for complete methods).
We included hair cortisol levels as a measure of chronic stress
(Meyer and Novak, 2012; Manenschijn ez al., 2013; Karlén et
al., 2015) (see Van der Walt et al., 2021 for cortisol methods).

We assessed the effect of climate driven changes in summer
habitat use by polar bears on virus richness and total viral
load. Some SB polar bears opportunistically scavenge bow-
head whale (Balaena mysticetus) carcasses left by subsistence
hunters in summer and fall (Herreman and Peacock, 2013;
Rogers et al., 2015). Bears with > 5% bowhead whale in
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Table 2: ORF1 characteristic of viruses identified in serum samples from 24 Southern Beaufort Sea polar bears

Virus ID Year Detected | Size (nt) Closest nt match | Closest nt match % nt ID to GenBank accession
accession® taxon(year)© closest match® number
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Table 2: Continued

Year Detected Closest nt match | Closest nt match % nt ID to Clade GenBank accession
accession® taxon(year)© closest match® number
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3Length refers to the length of the nucleotide (nt) sequence for ORF1, used for phylogenetic and viral load analyses; ®GenBank accession number of closest match using
BLASTx is shown €all Gp reference viruses are giant panda from China in (year), except 4Tupasis, Japan, 2001, ¢ % identity refers to percent nucleotide identity of ORF1

to the closest match in GenBank.

their diet are considered to be using on-shore summer habitat
(Atwood et al., 2017; McKinney et al., 2017). Using on-shore
habitat versus sea ice habitat leads to increased risks associ-
ated with contact with humans, other polar bears and other
wildlife. These behaviors have been shown to affect exposure
to toxicant load and bacterial pathogens; and therefore, may
influence viral richness and load (Atwood et al., 2016b,2017;
McKinney et al., 2017; Bourque et al., 2018).

We examined these relationships individually with gener-
alized linear models using the Wald method to test for signifi-
cance at an alpha level of 0.05. For viral presence/absence we
conducted logistic regression. Regression analyses were con-
ducted using base R 4.2.1 (R Core Team, 2021). To examine
possible genetic changes in anelloviruses over time, we com-
puted pairwise patristic distances between ORF 1 nucleotide
sequences and compared them to pairwise differences in the
year of anellovirus detection using the Mantel tests of matrix
correlation (Mantel, 1967) with 10000 permutations using
the APE package in R (Paradis et al., 2004).

Results

In the serum of 24 polar bears (Table 1), we identified
48 distinct anelloviruses (Table 2, Supplement A) and no
other viruses associated with eukaryotic hosts. All polar
bear anelloviruses identified shared the typical genome
architecture for this type of virus (Supplementary Figure 1A).
Amino acid similarity of ORF 1 to known viruses was
low, as expected from published results (Varsani et al.,
2021) and ranged from 29.21%—60.00%. (Table 2). A
maximum likelihood phylogenetic tree based on ORF 1
nucleotide sequences (final alignment=2163 positions) of
newly discovered anelloviruses (n=48) and the closest

BLAST matches in Genbank (reference sequences, n=38)
consisted of two clades. Clade A is comprised of 26 polar bear
anelloviruses and clade B included 22 polar bear anelloviruses
(Figure 2). In all cases, sequences clustered most closely with
viruses from the same host species indicating that the newly
identified polar bear anelloviruses are more similar to each
other than to previously described anelloviruses. Of the polar
bears infected by anelloviruses (n=23), all (100%) were
infected with viruses from clade A. Polar bear 7 (PB#7)
was the only individual that was not infected by a virus
from clade B. Clade B contained three divergent groups
in addition to sequences from giant pandas (Ailuropoda
melanoleuca) and a tree shrew (Tupaia belangeri) (Figure 2).
Pairwise genetic and temporal distances between polar
bear anelloviruses were positively correlated, indicating
that anelloviruses from samples collected closer together in
time were also more genetically similar (Figure 3; »=0.16;
P=0.028; slope =0.007% change per year of detection).

Average anellovirus richness in SB polar bears was 20
(Figure 4a, range, 0-38; median, 22; SD, 11.1). One indi-
vidual (PB#135), a year-old cub, did not have any detectable
anelloviruses, while the only other year-old cub in our sample
(PB#22) had the highest anellovirus richness of 38 (Table 1,
Supplementary Figure 1B). The mean total anellovirus load
from the serum of our sample population was 0.61 logyg
vRPM/kb (Figure 4b; range, 0-2.01; median, 0.49; SD, 0.52).
The prevalence of each virus in the populations ranged from
8% to 83% (Figure 5).

Anellovirus richness and total viral load increased slightly
with age for females and declined slightly with age for
males, but these relationships were not statistically significant
(Table 3). Similarly, year of capture did not significantly
influence viral richness or load (Table 3). Physiological
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Figure 2: Maximum-likelihood phylogenetic tree of polar bear anelloviruses identified in this study(bold) and most closely-related viruses.
Bootstrap values (%) are based on 1000 replicates, bootstrap values > 50% are labeled. All Giant panda (Ailuropoda melanoleuca) taxon (Gp) are
from China in year referenced. All PbV sequences are from the USA, Southern Beaufort Sea polar bear subpopulation. Sequence Tbc-TTV14 is
from a tree shrew (Tupaia belangeri) from Japan. Scale bar indicates nucleotide substitutions per site. Clades are indicated by A and B. See
Table 2 for GenBank accession numbers for all viruses and year of detection.

biomarkers were also not significantly correlated with
richness or load of anelloviruses (Table 3). Whether polar
bears spent the summer using on-shore habitat or off-shore
habitat did not significantly influence anellovirus richness or
load (Table 3, Supplement C).

Discussion

We characterized the serum virome component of the micro-
biome of 24 polar bears from the SB subpopulation and iden-
tified 48 new anelloviruses. The anelloviruses we identified sort
into two clades together with anelloviruses of another ursid,
the giant panda (Varsani et al., 2021). These results are similar
to reports of host-associated anelloviruses in other wildlife
species (Fahsbender er al., 2017; Kraberger et al., 2021;

Varsani et al., 2021). Similarly, our finding of a large number
of anelloviruses in individual bears aligns with data from
felids (Kraberger et al., 2021), palm civets (Nishizawa et al.,
2018), primates (Hrazdilova et al., 2016) and suids (Huang
et al., 2010). The diversity of anelloviruses and the species
specificity suggests that within the host recombination of
the viruses with a likely coevolutionary relationship between
anelloviruses and their hosts (Fahsbender er al., 2017;Arze
et al., 2021 ; Kraberger et al., 2021). The large number of
anelloviruses in individual polar bears was consistent over
time, supporting the notion that anelloviruses persistently
infect hosts and may, like in humans, be controlled when
immune function is not suppressed (Arze et al., 2021). Inter-
estingly, we identified a weak but statistically significant trend
of increasing genetic differentiation between viruses over time
in SB polar bear anelloviruses. We caution that this trend
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Figure 3: Pairwise genetic and temporal distance of 48 polar bear anelloviruses found in Southern Beaufort Sea polar bears between 2004 and
2015. Solid line is the least squares line (pairwise distance = 0.007x + 70.03, r = 0.1596).
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Figure 4: Histograms of (a) anellovirus richness and (b) total anellovirus loads in 24 Southern Beaufort Sea polar bears (log;g VRPM/kb = logqo
viral reads per million per kilobase).
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Prevalence

Virus ID (%) lower upper
1 16 66.7 0.48 0.86
2 14 58.3 0.39 0.78
3 16 66.7 0.48 0.86
4 16 66.7 0.48 0.86
5 6 25.0 0.08 0.42
6 12 50.0 0.30 0.70
7 8 333 0.14 0.52
8 11 45.8 0.26 0.66
9 14 58.3 0.39 0.78
10 6 25.0 0.08 0.42
11 11 45.8 0.26 0.66
12 9 37.5 0.18 0.57
13 5 20.8 0.05 0.37
14 8 33.3 0.14 0.52
15 14 58.3 0.39 0.78
16 7 29.2 0.11 0.47
17 14 58.3 0.39 0.78
18 4 16.7 0.02 0.32
19 7 29.2 0.11 0.47
20 3 12.5 -0.01 0.26
21 3 12.5 -0.01 0.26
22 6 25.0 0.08 0.42
23 12 50.0 0.30 0.70
24 14 58.3 0.39 0.78

Proportion of Polar Bears with each Anellovirus

Research Article

Prevalence
Virus ID (%) lower upper
25 7 29.2 0.11 0.47
26 13 54.2 0.34 0.74
27 2 8.3 -0.03 0.19
28 10 41.7 0.22 0.61
29 7 29.2 0.11 0.47
30 8 333 0.14 0.52
31 12 50.0 0.30 0.70
32 11 45.8 0.26 0.66
33 14 58.3 0.39 0.78
34 16 66.7 0.48 0.86
35 8 333 0.14 0.52
36 14 58.3 0.39 0.78
37 13 54.2 0.34 0.74
38 12 50.0 0.30 0.70
39 6 25.0 0.08 0.42
40 16 66.7 0.48 0.86
41 4 16.7 0.02 0.32
42 12 50.0 0.30 0.70
43 11 45.8 0.26 0.66
44 9 37.5 0.18 0.57
45 9 37.5 0.18 0.57
46 17 70.8 0.53 0.89
47 6 25.0 0.08 0.42
48 20 83.3 0.68 0.98
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Figure 5: Prevalence (%) of each anellovirus in the sample population of 24 polar bears Southern Beaufort Sea polar bears with upper and
lower 95% confidence intervals using the Wald Method and proportion of polar bears with each anellovirus. xnumber of polar bears infected

with virus

should not be interpreted as an evolutionary rate, because our
analysis was not lineage specific (due to very limited numbers
of viruses from the same lineages over time). Rather, we
speculate that this trend reflects a combination of anellovirus
community turnover and molecular evolution of the ORF
1 gene.

Persistent infection is a hallmark of the anelloviruses
(Arze et al., 2021; Kraberger ef al., 2021). The polar bear
“anellome” appears to be commensal and to vary by individ-
ual, consistent with results from other species (Crane et al.,
2018). Similar to anelloviruses of other species, polar
bear anelloviruses appear to be diverse and host specific

(Nishizawa et al., 2018; Kraberger et al., 2021). Contrary to
our predictions, viral richness and load did not correlate with
the demographic, physiologic or behavioral parameters we
assessed. However, we do show that anelloviruses identified
more closely in time have shorter genetic distances between
them than those identified further apart; suggesting that the
polar bear anellome is evolving, likely through a combi-
nation of point substitution and haplotype turnover (Arze
et al., 2021).

Anelloviruses have been found in blood, serum, feces,
semen and the oral cavity and tissues of their hosts (Kac-
zorowska and van der Hoek, 2020). Mechanisms for virus
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Table 3: Summary of model covariates and their relationship with anellovirus richness and load in 24 Southern Beaufort Sea polar bears (See

Supplementary Figures 1C and 2C)

Load
(log10 VRPM/kb)

R ™ S [t [ [ e pey

Polar bears with > 5% bowhead in diet considered to use summer on-shore habitat.

transmission have been hypothesized to include diet, sexual,
fecal-oral, respiratory and through blood transfusion and
organ transplant (Arze et al., 2021). A dietary route of
infection for polar bear anelloviruses is possible but difficult
to ascertain. The viromes of ringed seals (Pusa bispida), the
primary prey of polar bears and bowhead whales (Balaena
mysticetus), the primary on-shore diet of SB polar bears, have
yet to be investigated. Other modes of transmission, such as
airborne or sexual transmission, are also possible but mech-
anisms have not been realized (Kaczorowska et al., 2022b).
Anelloviruses have been detected in human infants as young
as 6 weeks old but were unrelated to maternal anelloviruses
(Kaczorowska er al., 2022a), providing no evidence to date of
vertical transmission.

Our sample population was selected to maximize repre-
sentation of bears across demographic characteristics, such as
sex, age and summer habitat use, over 11 years during which
polar bears underwent marked changes in habitat availability
resulting from climate change (see Atwood et al., 2016b,
2021, Bromaghin et al., 2015, Johnson and Derocher, 2020,
Rode et al., 2014). Infection with viruses is difficult to detect.
Infections can be short-lived or seasonal and can differ based
on sample type. Our finding of a limited virome represent
a baseline from which to evaluate virome changes. In terms
of anelloviruses, longitudinal studies of individual bears over
longer periods could reveal associations between anellovirus
richness and load and physiological and ecological factors.
Our findings are similar to Watson et al’s (2019) investiga-
tion of the fecal microbiota of polar bears, which showed
that neither sex nor age significantly influenced microbiota
richness. Further, lack of a relationship between anellovirus
load or richness and physiological biomarkers suggests that,
unlike in humans, anelloviruses in polar bears do not appear
to respond to physiological stress, at least within the range of
physiological parameters we were able to examine, suggest-
ing that immune function in these polar bears is competent

in controlling anellovirus load (Arze ef al., 2021). Overall,
anelloviruses are unlikely to be an effective ecoimmunological
marker of immune function in polar bears; nevertheless, our
findings of a relatively innocuous virome in polar bears pro-
vide a baseline against which to evaluate changes over time.
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